54/74197 54LS/74LS197
 PRESETTABLE BINARY COUNTERS

DESCRIPTION - The '197 ripple counter contains divide-by-two and divide-by-eight sections which can be combined to form a modulo-16 binary counter. State changes are initiated by the falling edge of the clock. The '197 has a Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input ($\overline{\mathrm{PL}}$) overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (P_{n}) into the flip-flops. This preset feature makes the circuit usable as a programmable counter. The circuit can also be used as a 4 -bit latch, loading data from the Parallel Data inputs when $\overline{\mathrm{PL}}$ is LOW and storing the data when $\overline{\mathrm{PL}}$ is HIGH. For detail specifications and functional description, please refer to the '196 data sheet.

- HIGH COUNTING RATES - TYPICALLY 70 MHz
- ASYNCHRONOUS PRESET
- ASYNCHRONOUS MASTER RESET

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{gathered} \text { PKG } \\ \text { TYPE } \end{gathered}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	74197PC, 74LS197PC		9A
Ceramic DIP (D)	A	74197DC, 74LS197DC	54197DM, 54LS197DM	6A
Flatpak (F)	A	74197FC, 74LS197FC	54197FM, 54LS197FM	31

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
$\overline{\mathrm{CP}}{ }_{0}$	$\div 2$ Section Clock Input (Active Falling Edge)	2.0/3.0	1.0/1.5
$\overline{\mathrm{CP}} 1$	$\div 8$ Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/0.81
$\overline{M R}$	Asynchronous Master Reset Input (Active LOW)	2.0/2.0	1.0/0.5
$P_{0}-P_{3}$	Parallel Data Inputs	1.0/1.0	0.5/0.25
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	0.5/0.25
Q_{0}	$\div 2$ Section Output*	20/10	$\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$
$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	$\div 8$ Section Outputs	20/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

[^0]MODE SELECTION TABLE

INPUTS			RESPONSE
$\overline{\mathrm{MR}}$	$\overline{\mathrm{PL}}$	$\overline{\mathrm{CP}}$	
L	x	X	Qn forced LOW
H	L	X	$\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	H	\sim	Count Up

H = HIGH Voltage Level $\mathrm{L}=\mathrm{LOW}$ Voltage Level $X=$ Immaterial
$\div 16$ STATE DIAGRAM

LOGIC DIAGRAM

[^0]: - Qo output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}} \mathbf{P}_{1}$ input.

