

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
$\overline{\mathrm{CP}}_{0}$	$\div 2$ Section Clock Input (Active Falling Edge)	2.0/2.0	0.125/1.5
$\overline{C P}_{1}$	$\div 6$ Section Clock Input (Active Falling Edge)	3.0/3.0	0.250/2.0
MR1, MR2	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	0.5/0.25
Qo	$\div 2$ Section Output*	20/10	$\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$
$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	$\div 6$ Section Outputs	20/10	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

- The Q_{0} output is guaranteed to drive the full rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input.

FUNCTIONAL DESCRIPTION - The ' 92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-toLOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_{0} output of each device is designed and specified to drive the rated fan-out plus the $\overline{C P}_{1}$ input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:
A. Modulo 12, Divide-By-Twelve Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and Q_{3} produces a symmetrical divide-by-twelve square wave output.
B. Divide-By-Two and Divide-By-Six Counter - No external interconnections are required. The first flipflop is used as a binary element for the divide-by-two function. The $\overline{\mathrm{CP}}{ }_{1}$ input is used to obtain divide-by-three operation at the Q_{1} and Q_{2} outputs and divide-by-six operation at the Q_{3} output.

MODE SELECTION TABLE

RESET INPUTS		OUTPUTS			
MR $_{1}$	MR $_{2}$	Q $_{0}$	Q $_{1}$	Q $_{2}$	Q $_{3}$
H	H	L	L Col	L	L
L	H		Count		
H	L		Count		
L	L		Count		

$H=$ HIGH Voltage Level
L = LOW Voltage Level

TRUTH TABLE

count	OUTPUT			
	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	L	L	H
7	H	L	L	H
8	L	H	L	H
9	H	H	L	H
10	L	L	H	H
11	H	L	H	H

NOTE: Output Q_{0} connected to $\overline{C P} 1$

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		Min Max	Min Max		
IIH	Input HIGH Current, $\overline{\mathrm{CP}}_{0}$	1.0	0.2	mA	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
liH	Input HIGH Current, $\overline{\mathrm{CP}}_{1}$	1.0	0.4	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
Icc	Power Supply Current	39	15	mA	$\mathrm{V} C \mathrm{C}=\mathrm{Max}$

AC CHARACTERISTICS: $\operatorname{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/7		54/7	4LS	UNITS	CONDITIONS
		$\begin{aligned} & \mathrm{CL}^{2}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		$C_{L}=15 \mathrm{pF}$			
		Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency, $\overline{C P}_{0}$ Input	32		32		MHz	Figs. 3-1, 3-9
$f_{\text {max }}$	Maximum Count Frequency, $\overline{\mathrm{CP}}_{1}$ Input	16		16		MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay $\overline{\mathrm{CP}} 0$ to Q_{0}		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		16 18	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}} 0$ to Q_{3}		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		48 50	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\overline{C P}_{1}$ to Q_{1}		16 21		16 21	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}_{1}$ to Q_{2}		16 21		16 21	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $\overline{C P}_{1} \text { to } Q_{3}$		32 35		32 35	ns	Figs. 3-1, 3-9
tPHL	Propagation Delay, MR to Qn_{n}		40		40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max		
$\mathrm{t}_{\mathbf{w}}(\mathrm{H})$	$\overline{\mathrm{CP}}_{0}$ Pulse Width HIGH	15		15		ns	Fig. 3-9
$\mathrm{tw}_{w}(\mathrm{H})$	$\overline{\mathrm{CP}}_{1}$ Pulse Width HIGH	30		30		ns	
$\mathrm{tw}_{\text {w }}(\mathrm{H})$	MR Pulse Width HIGH	15		15		ns	Fig. 3-17
trec	Recovery Time, MR to CP	25		25		ns	

