54ABT16244

54ABT16244 16-Bit Buffer/Line Driver with TRI-STATE Outputs

Literature Number: SNOS050A

54ABT16244

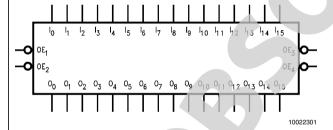
OBSOLETE

September 10, 2009

16-Bit Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'ABT16244 contains sixteen non-inverting buffers with TRI-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual TRI-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

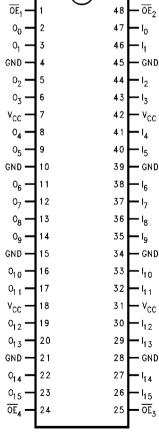

Features

- Separate control logic for each nibble
- 16-bit version of the 'ABT244
- Outputs sink capability of 48 mA, source capability of 24 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9317402

Ordering Code

Military	Package	Package Description
	Number	
54ABT16244W-QML	WA48A	48-Lead Cerpack

Logic Symbol



Pin Descriptions

Pin Names	Description					
\overline{OE}_n	Output Enable Inputs (Active Low)					
I ₀ -I ₁₅	Inputs					
O ₀ -O ₁₅	Outputs					

Connection Diagram

Pin Assignment for Cerpack

10022302

TRI-STATE® is a registered trademark of National Semiconductor Corporation

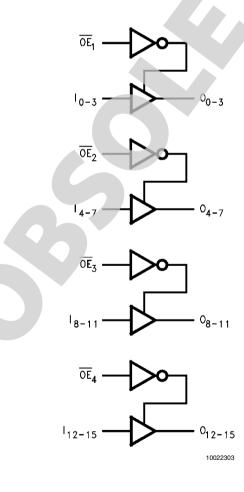
Functional Description

The 'ABT16244 contains sixteen non-inverting buffers with TRI-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Truth Table

In	Outputs	
OE ₁	OE ₁ I ₀ –I ₃	
L	L	L
L	Н	Н
н	X	Z

Ir	Outputs	
ŌE ₃	OE ₃ I ₈ –I ₁₁	
L	L	L
L	Н	Н
н	Χ	Z


In	Outputs	
OE ₂	I ₄ –I ₇	O ₄ -O ₇
L	L	L
L	Н	Н
Н	Χ	Z

I	Outputs	
ŌĒ₄	I ₁₂ –I ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	Н
Н	X	z

H = High Voltage Level L = Low Voltage Level

X = Immaterial Z = High Impedance

Logic Diagram

Absolute Maximum Ratings (Note 1)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \end{array}$

Junction Temperature under Bias

Ceramic -55°C to +175°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V

Input Voltage (*Note 2*) -0.5V to +7.0V

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-off State -0.5V to 5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

DC Latchup Source Current -500 mA
Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military –55°C to +125°C

Supply Voltage

Military +4.5 V to +5.5 VMinimum Input Edge Rate $(\Delta \text{V}/\Delta \text{t})$ Data Input 50 mV/ns

Enable Input 20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Doro	ımeter	A	3T162	244	Units	V	Conditions
Syllibol	Pala		Min	Тур	Max	Units	V _{cc}	Conditions
/ _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
/ _{IL}	Input LOW Voltage				0.8	٧		Recognized LOW Signal
CD	Input Clamp Diode Vol	tage			-1.2	V	Min	I _{IN} = -18 mA
/ _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA
		54ABT	2.0			V	Min	I _{OH} = -24 mA
/ _{OL}	Output LOW Voltage	54ABT			0.55	٧	Min	I _{OL} = 48 mA
IH	Input HIGH Current				5	μΑ	Max	V _{IN} = 2.7V (<i>Note 3</i>)
					5			$V_{IN} = V_{CC}$
BVI	Input HIGH Current			-17	7	μΑ	Max	V _{IN} = 7.0V
	Breakdown Test							
IL	Input LOW Current				-5	μΑ	Max	V _{IN} = 0.5V (<i>Note 3</i>)
					-5			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			٧	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
OZH	Output Leakage Curre	nt			50	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
l _{OZL}	Output Leakage Curre	nt			-50	μΑ	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
os	Output Short-Circuit C	urrent	-100		-275	mA	Max	V _{OUT} = 0.0V
CEX	Output High Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
zz	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V
								All Other Pins GND
ССН	Power Supply Current				2.0	mA	Max	All Outputs HIGH
CCL	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				2.0	mA	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or GND
Гсст	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs TRI-STATE			50	μΑ		Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/		Outputs Open, $\overline{OE}_n = GND$
	(Note 3)				0.1	MHz	Max	One Bit Toggling,
								50% Duty Cycle

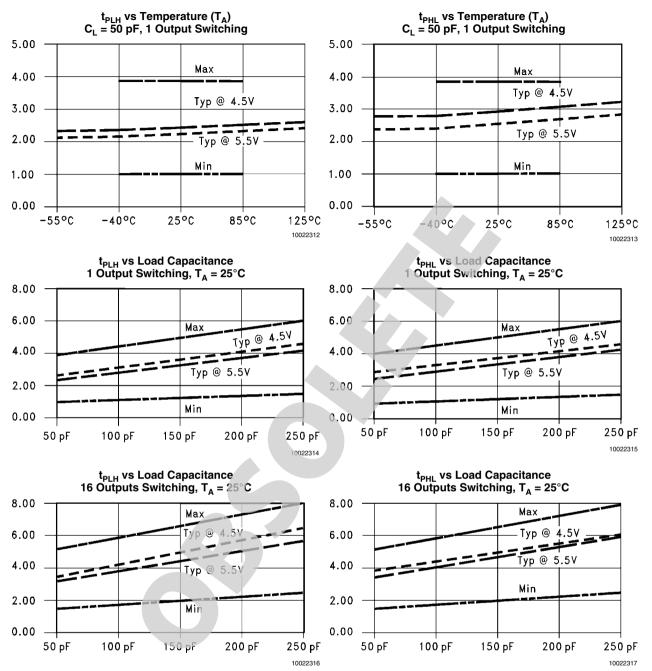
Note 3: Guaranteed but not tested.

DC Electrical Characteristics

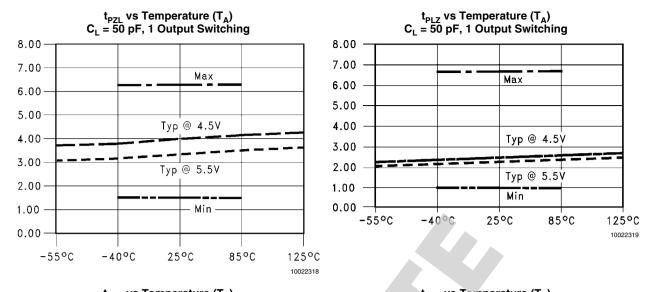
Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions $C_{L} = 50 \text{ pF},$ $R_{L} = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		1.1	V	5.0	T _A = 25°C (<i>Note 4</i>)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.45	V	5.0	T _A = 25°C(<i>Note 4</i>)

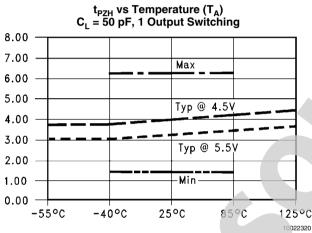
Note 4: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW.

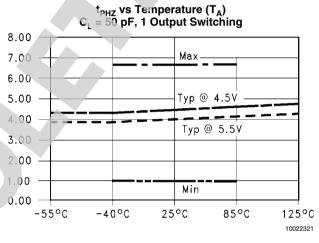
AC Electrical Characteristics

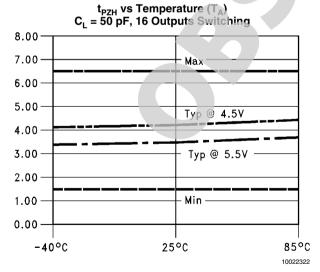

Symbol	Parameter			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V - 5.5V$		Units	Fig. No.
		Min	Max				
t _{PLH}	Propagation	0.5	5.3	ns	Figure 2		
t _{PHL}	Delay Data	0.5	5.9				
	to Outputs						
t _{PZH}	Output Enable	1.5	6.8	ns	Figure 5		
t _{PZL}	Time	1.5	7.0				
t _{PHZ}	Output Disable	1.5	7.7	ns	Figure 5		
t _{PLZ}	Time	1.5	6,5				

Capacitance

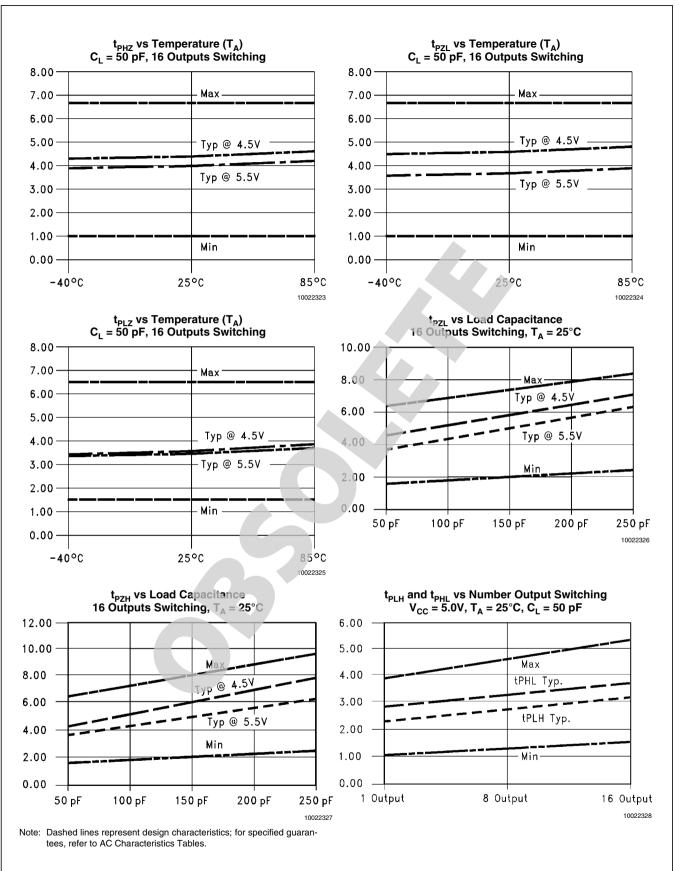

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 5.0V
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

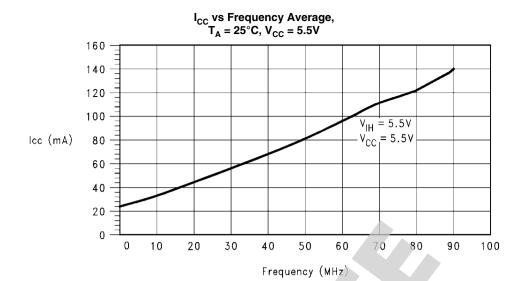

Note 5: C_{OUT} is measured at frequency f = 1 MHz; per MIL STD-883B, Method 3012.


Capacitance Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Tables.

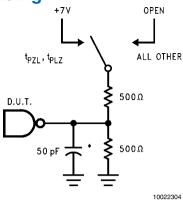


Note: Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Tables.





Note: Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Tables.



10022329

Note: Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Tables.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

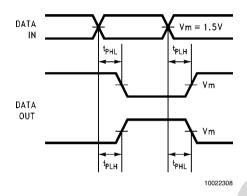
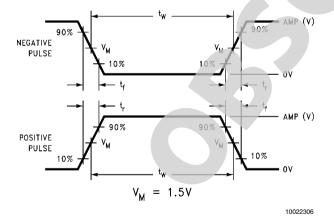



FIGURE 2. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 3. Test Input Pulse Requirements

Amplitude	Rep Rate	t _w	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 4. Test Input Signal Requirements

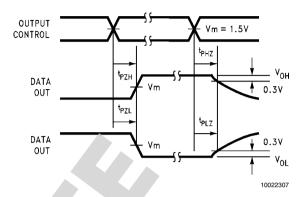
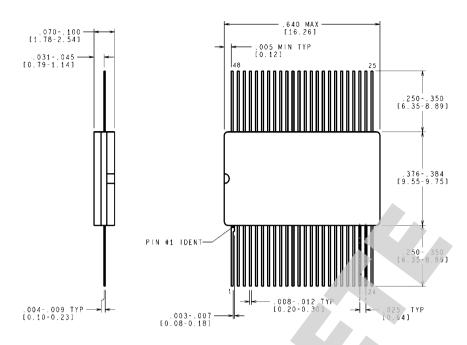



FIGURE 5. TRI-STATE Output HIGH and LOW Enable and Disable Times

Physical Dimensions inches (millimeters) unless otherwise noted



CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

WA48A (Rev B)

48-Lead Cerpack NS Package Number WA48A

11

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated