

www.ti.com

SNOS100A-MAY 2004-REVISED JULY 2011

54AC251 • 54ACT251 8-Input Multiplexer with TRI-STATE[®] Output

Check for Samples: 54AC251, 54ACT251

FEATURES

- + I_{CC} reduced by 50%
- Multifunctional capability
- On-chip select logic decoding
- Inverting and noninverting TRI-STATE outputs
- Outputs source/sink 24 mA
- 'ACT251 has TTL-compatible inputs
- Standard Military Drawing (SMD)
 - --- 'AC251: 5962-87692
 - —'ACT251: 5962-89599

DESCRIPTION

The 'AC/'ACT251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

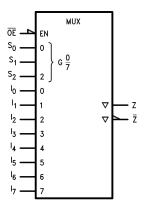



Figure 1. IEEE/IEC

Pin Names	Description		
S ₀ -S ₂	Select Inputs		
$\frac{S_0 - S_2}{\overline{OE}}$	TRI-STATE Output Enable Input		
I ₀ —I ₇	Multiplexer Inputs		
Z	TRI-STATE Multiplexer Output		
Z	Complementary TRI-STATE Multiplexer		
	Output		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRI-STATE is a registered trademark of Texas Instruments.

FACT is a registered trademark of Fairchild Semiconductor Corporation. All other trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

www.ti.com

SNOS100A-MAY 2004-REVISED JULY 2011

Connection Diagram

Figure 2. Pin Assignment for DIP and Flatpak

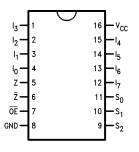
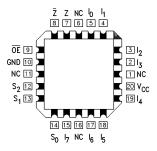



Figure 3. Pin Assignment for LCC

Functional Description

This device is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both true and complementary outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

$$Z = \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$$

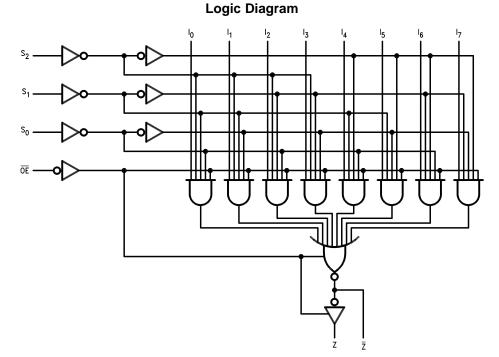
When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active-LOW portion of the enable voltages.

	Inp	Out	outs		
OE	S ₂	S ₁	S ₀	Z	Z
Н	Х	Х	Х	Z	Z
L	L	L	L	Īo	Ι _Ο
L	L	L	Н	Ī	I ₁
L	L	Н	L	Ī ₂	l ₂
L	L	Н	Н	Ī3	I ₃

(1) H = HIGH Voltage Level

L = LOW Voltage Level

X = ImmaterialZ = High Impedance


2 Submit Documentation Feedback

www.ti.com

Truth Table ⁽¹⁾ (continued)

	Inp	Out	puts		
OE	S ₂	S ₁	S ₀	Z	Z
L	Н	L	L	Ī ₄	I ₄
L	Н	L	Н	Ī ₅	I ₅
L	Н	Н	L	Ī ₆	I ₆
L	Н	Н	Н	Ī ₇	I ₇

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNOS100A-MAY 2004-REVISED JULY 2011

www.ti.com

Absolute Maximum Ratings (1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	-20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V ₁)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{\rm O} = -0.5V$	-20 mA
$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	−65°C to +150°C
Junction Temperature (T _J)	
CDIP	175°C

(1) Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT[®] circuits outside databook specifications.

Recommended OperatingConditions

Supply Voltage (V _{CC})	
'AC	2.0V to 6.0V
'ACT	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	
54AC/ACT	−55°C to +125°C
Minimum Input Edge Rate (ΔV/Δt)	
'AC Devices	
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
Minimum Input Edge Rate (ΔV/Δt)	
'ACT Devices	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns

www.ti.com

SNOS100A-MAY 2004-REVISED JULY 2011

DC Chai	racteristics	for 'AC	C Family	Devices	;

			54AC		
Symbol	Parameter	V _{cc}	T _A = −55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
∕ _{IH}	Minimum High Level Input	3.0	2.1	V	$V_{OUT} = 0.1V \text{ or } V_{CC} - 0.1V$
	Voltage	4.5	3.15		
		5.5	3.85		
V _{IL}	Maximum Low Level Input	3.0	0.9	V	$V_{OUT} = 0.1 V \text{ or } V_{CC} - 0.1 V$
	Voltage	4.5	1.35		
		5.5	1.65		
V _{OH}	Minimum High Level Output	3.0	2.9	V	I _{OUT} = -50 μA
	Voltage	4.5	4.4		
		5.5	5.4		
					(1)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	2.4		I _{OH} = −12 mA
		4.5	3.7	V	I _{OH} = −24 mA
		5.5	4.7		I _{OH} = −24 mA
V _{OL}	Maximum Low Level Output	3.0	0.1		Ι _{ΟUT} = 50 μΑ
	Voltage	4.5	0.1	V	
		5.5	0.1		
					(1)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	0.50		I _{OL} = 12 mA
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	±1.0	μΑ	$V_{I} = V_{CC}, GND$
l _{oz}	Maximum TRI-STATE Current				V_{I} (OE) = V_{IL} , V_{IH}
		5.5	±5.0	μA	$V_{I} = V_{CC}, V_{GND}$
					$V_{O} = V_{CC}, GND$
OLD	Minimum Dynamic Output	5.5	50	mA	V _{OLD} = 1.65V Max
l _{онд}	Current ⁽²⁾	5.5	-50	mA	V _{OHD} = 3.85V Min
cc	Maximum Quiescent Supply Current	5.5	80.0	μΑ	$V_{IN} = V_{CC}$ or GND

(1) All outputs loaded; thresholds on input associated with output under test.

(2) Maximum test duration 2.0 ms, one output loaded at a time.

TEXAS INSTRUMENTS

www.ti.com

DC Characteristics for 'ACT Family Devices

			54ACT		
Symbol	Parameter	V _{cc}	T _A = −55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level Input	4.5	2.0	V	V _{OUT} = 0.1V
	Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low Level Input	4.5	0.8	V	V _{OUT} = 0.1V
	Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High Level Output	4.5	4.4	V	I _{OUT} = -50 μA
	Voltage	5.5	5.4		
					(1)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	3.70	V	I _{OH} = −24 mA
		5.5	4.70		I _{OH} = −24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ
		5.5	0.1		
					(1)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	±1.0	μΑ	$V_{I} = V_{CC}, GND$
I _{OZ}	Maximum TRI-STATE Current	5.5	±5.0	μA	$V_{I} = V_{IL}, V_{IH} V_{O} = V_{CC}, GND$
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic Output Current ⁽²⁾	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Current ⁽²⁾	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	80.0	μA	$V_{IN} = V_{CC}$ or GND

(1) All outputs loaded; thresholds on input associated with output under test.

(2) Maximum test duration 2.0 ms, one output loaded at a time.

6

www.ti.com

AC Electrical Characteristics

SNOS100A-MAY 2004-REVISED JULY 2011

Symbol	Parameter	V _{cc} (V) ⁽¹⁾		54AC T _A = −55°C to +125°C C _L = 50 pF Min Max		
t _{PLH}	Propagation Delay S_n to Z or \overline{Z}		1.0	21.0	ns	
		5.0	1.0	15.5		
t _{PHL}	Propagation Delay S_n to Z or \overline{Z}	3.3	1.0	21.0	ns	
		5.0	1.0	15.5		
t _{PLH}	Propagation Delay I_n to Z or \overline{Z}	3.3	1.0	17.0	ns	
		5.0	1.0	12.0		
t _{PHL}	$\underline{Propagation Delay I_n to Z or \overline{Z}}$	3.3	1.0	16.5	ns	
		5.0	1.0	12.0		
t _{PZH}	Output Enable Time \overline{OE} to Z or \overline{Z}	3.3	1.0	13.0	ns	
		5.0	1.0	10.0		
t _{PZL}	Output Enable Time \overline{OE} to Z or \overline{Z}	3.3	1.0	13.0	ns	
		5.0	1.0	10.0		
t _{PHZ}	Output Disable Time \overline{OE} to Z or \overline{Z}	3.3	3.5	14.0	ns	
		5.0	2.5	11.0		
PLZ	Output Disable Time \overline{OE} to Z or \overline{Z}	3.3	4.0	13.0	ns	
		5.0	3.0	10.0		

(1) Voltage Range 3.3 is 3.3V \pm 0.3VVoltage Range 5.0 is 5.0V \pm 0.5V

TEXAS INSTRUMENTS

SNOS100A-MAY 2004-REVISED JULY 2011

www.ti.com

AC Electrical Characteristics

			54	ACT	
Symbol		V _{cc}	T _A =	T _A = −55°C	
	Parameter	(V)	to +	125°C	Units
		(1)	C _L =	50 pF	
			Min	Max	
t _{PLH}	Propagation Delay S_n to Z or \overline{Z}	5.0	1.0	18.0	ns
t _{PHL}	Propagation Delay S_n to Z or \overline{Z}	5.0	1.0	18.0	ns
t _{PLH}	Propagation Delay I_n to Z or \overline{Z}	5.0	1.0	13.5	ns
t _{PHL}	Propagation Delay I_n to Z or \overline{Z}	5.0	1.0	13.5	ns
t _{PZH}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.0	10.0	ns
t _{PZL}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.0	9.5	ns
t _{PHZ}	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	1.0	12.5	ns
t _{PLZ}	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	1.0	8.5	ns

(1) Voltage Range 5.0 is 5.0V ±0.5V

www.ti.com Capacitance SNOS100A-MAY 2004-REVISED JULY 2011

Capacitance				
Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70.0	pF	$V_{CC} = 5.0V$

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated