54ACQ/74ACQ533 • 54ACTQ/74ACTQ533 Quiet Series Octal Transparent Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'ACQ/'ACTQ533 consists of eight latches with TRISTATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is low, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the bus output is in the high impedance state.
The 'ACQ/'ACTQ533 utilizes NSC Quiet Series technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series ${ }^{\text {TM }}$ features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Improved latch up immunity
- Eight latches in a single package
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- Inverted version of the 'ACQ/'ACTQ373
- 4 kV minimum ESD immunity

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams
Pin Assignment for DIP, Flatpak and SOIC

TL/F/10630-3

Pin Assignment for LCC

TL/F/10630-4

Functional Description

The 'ACQ/'ACTQ533 contains eight D-type latches with TRI-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE standard outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{O E}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{O E}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$L E$	$\overline{O E}$	$\mathrm{D}_{\mathbf{n}}$	$\overline{\mathbf{O}}_{\boldsymbol{n}}$
X	H	X	Z
H	L	L	H
H	L	H	L
L	L	X	$\overline{\mathrm{O}}_{\mathbf{0}}$

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$Z=$ High impedance
$\mathrm{X}=$ Immaterial
$\bar{\sigma}_{0}=$ Previous $\bar{\sigma}_{0}$ before HIGH to Low transition of Latch Enable

Logic Diagram

TL/F/10630-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Rating (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (VCC)	-0.5 V to +7.0 V
DC Input Diode Current ($I_{1 K}$)	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$V_{1}=V_{C C}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (lo)	$\pm 50 \mathrm{~mA}$
DC VCC or Ground Current per Output Pin (ICC or IGND)	$\pm 50 \mathrm{~mA}$
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latchup Source or Sink Current	$\pm 300 \mathrm{~mA}$
Junction Temperature (T_{J})	
CDIP	$175{ }^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating

 Conditions| Supply Voltage (VCC) | |
| :--- | ---: |
| 'ACQ | 2.0 V to 6.0 V |
| 'ACTQ | 4.5 V to 5.5 V |
| Input Voltage $\left(\mathrm{V}_{1}\right)$ | 0 V to VCC |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to VCC |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | |
| 74ACQ/ACTQ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| 54ACQ/ACTQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |

Minimum Input Edge Rate $\Delta V / \Delta t$ 'ACQ Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC} V_{CC} @ 3.0V, 4.5V, 5.5 V
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate $\Delta V / \Delta t$
'ACTQ Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$

DC Characteristics for 'ACQ Family Devices

Symbol	Parameter	$V_{c c}$ (V)	74ACQ		54ACQ	74ACQ	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} C \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}-0.1 V \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & V_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
VOH	Minimum High Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} { }^{*} \mathrm{~V}_{I N}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & -12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$
VOL	Maximum Low Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} &{ }^{\circ} \mathrm{V}_{\text {IN }}= \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & 12 \mathrm{~mA} \\ & \begin{array}{r} \mathrm{I} \\ \hline \mathrm{OL} \\ 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \end{array} \\ & \hline \end{aligned}$
In	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$ (Note 1)

-All outputs loaded; thresholds on input associated with output under test.
\dagger Maximum test duration 2.0 ms, one output loaded at a time.

DC Characteristics for 'ACQ Family Devices (Continued)

Symbol	Parameter	$V_{C c}$ (V)	74ACQ		54ACQ	74ACQ	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed LImits				
IOLD	\dagger Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			-50	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160.0	80.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \\ & \text { or GND (Note 1) } \end{aligned}$
loz	Maximum TRI-STATE Leakage Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}(O E)=V_{I L}, V_{I H} \\ & V_{1}=V_{C C}, G N D \\ & V_{O}=V_{C C}, G N D \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic VOL	5.0	1.1	1.5			V	Figures 1, 2 (Notes 2, 3)
Volv	Quiet Output Minimum Dynamic VOL	5.0	-0.6	-1.2			V	Figures 1, 2 (Notes 2, 3)
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	5.0	3.1	3.5			V	(Notes 2, 4)
VILD	Maximum Low Level Dynamic Input Voltage	5.0	1.9	1.5			V	(Notes 2, 4)

-All outputs loaded; thresholds on input associated with output under test.
†Maximum test duration 2.0 ms , one output loaded at a time.
Note 1: I_{IN} and $\mathrm{ICC}_{\text {© }}$ 3.0V are guaranteed to be less than or equal to the respective limit © $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. Icc for 54 ACQ © $25^{\circ} \mathrm{C}$ is identical to 74 ACQ © $25^{\circ} \mathrm{C}$.
Note 2: Worst case package.
Note 3: Max number of outputs defined as (n). Data inputs are driven OV to 5 V . One output @ GND.
Note 4: Max number of data inputs (n) switching. ($n-1$) inputs switching OV to 5 V ('ACQ). Input-under-test switching: 5 V to threshold ($\mathrm{V}_{\text {ILD }}$), OV to threshold ($\mathrm{V}_{\mathrm{IHD}}$), $1=1 \mathrm{MHz}$.

DC Characteristics for 'ACTQ Family Devices

Symbol	Parameter	Vcc (V)	74ACTQ		54ACTQ	74ACTQ	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} C \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}=0.1 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{\text {CC }}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
V OH	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{array}{\|l\|} \hline 4.5 \\ 5.5 \\ \hline \end{array}$		$\begin{aligned} & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.70 \\ 4.70 \\ \hline \end{array}$	$\begin{aligned} & 3.76 \\ & 4.76 \\ & \hline \end{aligned}$	V	$\begin{array}{ll} { }^{*} \mathrm{~V}_{\mathrm{IN}}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{I}^{\mathrm{OH}} & -24 \mathrm{~mA} \\ -24 \mathrm{~mA} \end{array}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & \hline \end{aligned}$	V	
IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loz	Maximum TRI-STATE Leakage Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=V_{I L}, V_{I H} \\ & V_{O}=V_{C C}, G N D \end{aligned}$

[^0]| Symbol | Parameter | VCC
 (V) | 74ACTQ | | 54ACTQ | 74ACTQ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | | $\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ | | |
| | | | Typ | Guaranteed Limits | | | | |
| $\mathrm{I}_{\text {CCT }}$ | Maximum Icc/Input | 5.5 | 0.6 | | 1.6 | 1.5 | mA | $V_{1}=V_{C C}-2.1 \mathrm{~V}$ |
| IOLD | \dagger Minimum Dynamic Output Current | 5.5 | | | 50 | 75 | mA | $\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max |
| IOHD | | 5.5 | | | -50 | -75 | mA | $\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min |
| Icc | Maximum Quiescent Supply Current | 5.5 | | 8.0 | 160.0 | 80.0 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=V_{C C} \\ & \text { or GND (Note 1) } \end{aligned}$ |
| VOLP | Maximum High Level Output Noise | 5.0 | 1.1 | 1.5 | | | V | Figures 1, 2
 (Notes 2, 3) |
| Volv | Maximum Low Level Output Noise | 5.0 | -0.6 | -1.2 | | | V | Figures 1, 2
 (Notes 2, 3) |
| VIHD | Maximum High Level Dynamic Input Voltage | 5.0 | 1.9 | 2.2 | | | V | (Notes 2, 4) |
| VILD | Maximum Low Level Dynamic Input Voltage | 5.0 | 1.2 | 0.8 | | | V | (Notes 2, 4) |

-All outputs loaded; thresholds on input assoclated with output under test.
†Maximum test duration 2.0 ms , one output loaded at a time.
Note 1: Icc for 54 ACTO © $25^{\circ} \mathrm{C}$ is identical to 74 ACQ © $25^{\circ} \mathrm{C}$.
Note 2: Worst case package.
Note 3: Max number of outputs defined as (n). Data inputs are driven OV to 3V. One output © GND.
Noto 4: Max number of data inputs (n) switching. ($n-1$) inputs switching OV to 3V ('ACTQ). Input-under-test switching: 3V to threshold ($V_{1 L}$), OV to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}{ }^{*}$ (V)	74ACQ			54ACQ		74ACQ		Units	Fig. No.
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 8.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \\ \hline \end{gathered}$			$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{array}{r} 12.0 \\ 8.0 \\ \hline \end{array}$	ns	2-3, 4
${ }^{\text {tPLH, }}$ tPLH	Propagation Delay LE to O_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 13.0 \\ 8.5 \\ \hline \end{array}$			$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3, 4
${ }_{\text {tPZL, }}$ tPZH	Output Enable Time	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 13.0 \\ 8.5 \\ \hline \end{array}$			$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$	ns	2-5, 6
${ }_{\text {tPHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14.5 \\ 9.5 \\ \hline \end{gathered}$			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	2-5, 6
$\begin{aligned} & \text { tOSHL } \\ & \text { tOSLH } \end{aligned}$	Output to Output Skew** $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	ns	

${ }^{\bullet}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

- "Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, elther HIGH to LOW (LOSHJ or LOW to HIGH (LOSLH). Parameter guaranteed by design.

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}{ }^{*}$ (V)	74ACQ		54ACQ	74ACQ	Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum				
ts	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns	2.7
t_{H}	Hold Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns	2-7
tw	LE Pulse Width, HIGH	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns	2-3

- Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	$V_{C c}{ }^{*}$ (V)	74ACTQ			54ACTQ		74ACTQ		Units	Fig. No.
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay $D_{n} \text { to } O_{n}$	5.0	2.0	6.0	8.0			2.0	8.5	ns	2-3, 4
$t_{\text {PLH, }} \mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	5.0	2.5	7.0	9.0			2.5	9.5	ns	2-3, 4
$\mathrm{t}_{\text {PZL, }} \mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	7.0	9.0			2.0	9.5	ns	2-5, 6
$t_{\text {t }}$ HZ, tplz	Output Disable Time	5.0	1.0	8.0	10.0			1.0	10.5	ns	2-5, 6
toshl. tosLh	Output to Output Skew** $D_{n} \text { to } O_{n}$	5.0		0.5	1.0				1.0	ns	

- Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
- "Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (LOSHU or LOW to HIGH (LOSLH). Parameter guaranteed by design.

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$V_{C c}{ }^{*}$ (V)			54ACTQ	74ACTQ	Units	Fig. No.
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum				
ts	Setup Time, HIGH or LOW D_{n} to LE	5.0	0	3.0		3.0	ns	2.7
${ }^{\text {H }}$	Hold Time, HIGH or LOW D_{n} to LE	5.0	0	1.5		1.5	ns	2.7
${ }_{\text {tw }}$	LE Pulse Width, HIGH	5.0	2.0	4.0		4.0	ns	2-3

\cdot Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	40	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^0]: -All outputs loaded; thresholds on input associated with output under test.
 \dagger Maximum test duration 2.0 ms, one output loaded at a time.

