

SNOS072B -MAY 2004-REVISED AUGUST 2011

54ACT823 9-Bit D Flip-Flop

Check for Samples: 54ACT823

FEATURES

- Outputs source/sink 24 mA
- TRI-STATE outputs for bus interfacing
- Inputs and outputs are on opposite sides
- ACT823 has TTL-compatible inputs
- Standard Microcircuit Drawing (SMD) 5962-9161001

DESCRIPTION

The ACT823 is a 9-bit buffered register. It features Clock Enable and Clear which are ideal for parity bus interfacing in high performance microprogramming systems. The ACT823 offers noninverting outputs and is fully compatible with AMD's Am29823.

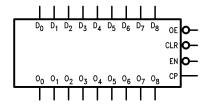
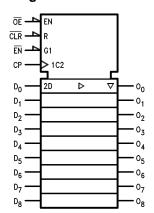



Figure 1. IEEE/IEC

Pin Names	Description		
D ₀ -D ₈	Data Inputs		
$\begin{array}{c} D_0 - D_8 \\ \hline O_0 - O_8 \\ \hline \overline{OE} \end{array}$	Data Outputs		
ŌĒ	Output Enable		
CLR	Clear		
СР	Clock Input		
EN	Clock Enable		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Connection Diagram

Figure 2. Pin Assignment for DIP and Cerpack

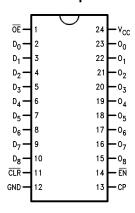
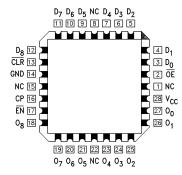



Figure 3. Pin Assignment for LCC

Functional Description

The ACT823 consists of nine D-type edge-triggered flip-flops. These have TRI-STATE outputs for bus systems organized with inputs and outputs on opposite sides. The buffered clock (CP) and buffered Output Enable (\overline{OE}) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With \overline{OE} LOW, the contents of the flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops. In addition to the Clock and Output Enable pins, there are Clear (\overline{CLR}) and Clock Enable (\overline{EN}) pins. These devices are ideal for parity bus interfacing in high performance systems.

When $\overline{\text{CLR}}$ is LOW and $\overline{\text{OE}}$ is LOW, the outputs are LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\text{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the $\overline{\text{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Table 1. Function Table (1)

Inputs					Internal	Output	Function
OE CLR EN CP D				Q	0		
Н	Х	L	N	L	L	Z	High Z

Product Folder Links: 54ACT823

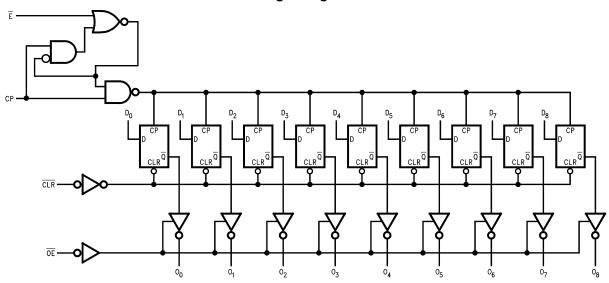
(1) H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

N = LOW-to-HIGH Transition


NC = No Change

Submit Documentation Feedback

Table 1. Function Table⁽¹⁾ (continued)

		Inputs		Internal	Output	Function	
ŌĒ	CLR	EN	СР	D	Q	0	
Н	Х	L	N	Н	Н	Z	High Z
Н	L	Х	Х	Х	L	Z	Clear
L	L	Х	Х	Х	L	L	Clear
Н	Н	Н	Χ	Χ	NC	Z	Hold
L	Н	Н	Х	Х	NC	NC	Hold
Н	Н	L	N	L	L	Z	Load
Н	Н	L	N	Н	Н	Z	Load
L	Н	L	N	L	L	L	Load
L	Н	L	N	Н	Н	Н	Load

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNOS072B-MAY 2004-REVISED AUGUST 2011

www.ti.com

Absolute Maximum Ratings (1)

Supply Voltage (V _{CC})	-0.5V to 7.0V
DC Input Diode Current (I _{IK})	
V _I = −0.5V	-20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
V _O = −0.5V	−20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source or Sink Current	
(I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	−65°C to +150°C
Junction Temperature (T _J)	
CDIP	175°C

⁽¹⁾ Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

Recommended Operating Conditions

. •	
Supply Voltage (V _{CC})	
ACT	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	
54ACT	−55°C to +125°C
Minimum Input Edge Rate (ΔV/Δt)	
ACT Devices	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns

SNOS072B-MAY 2004-REVISED AUGUST 2011

DC Electrical Characteristics(1)

Symbol	Parameter	V _{CC}	$T_A =$	Units	Conditions
		(V)	-55°C to +125°C		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} -0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	4.5	0.8		or V _{CC} -0.1V
V _{OH}	Minimum High Level Output Voltage	4.5	3.7	V	I _{OH} = −24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5	0.5	V	I _{OL} = 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	±1.0	μA	V _I = V _{CC} , GND
l _{OZ}	Maximum TRI-STATE	5.5	±10.0	μA	$V_I = V_{IL}, V_{IH}$
	Current				V _O = V _{CC} , GND
Ісст	Maximum I _{CC} /Input	5.5	1.6	mA	V _I = V _{CC} −2.1V
I _{OLD}	⁽²⁾ Minimum	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Dynamic Output Current	5.5	- 50	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5	160	μA	$V_{IN} = V_{CC}$
	Supply Current		·		or GND

⁽¹⁾ All outputs loaded; thresholds on input associated with output under test.(2) Maximum test duration 2.0 ms, one output loaded at a time.

SNOS072B-MAY 2004-REVISED AUGUST 2011

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	T _A = -55°C C _L =	Units	Fig. No.	
			Min	Max		
f _{max}	Maximum Clock	5.0	95		MHz	
	Frequency					
t _{PLH}	Propagation Delay	5.0	1.0	12.0	ns	
	CP to O _n					
t _{PHL}	Propagation Delay	5.0	1.0	12.0	ns	
	CP to O _n					
t _{PHL}	Propagation Delay	5.0	1.0	18.0	ns	
	CLR to O _n					
t _{PZH}	Output Enable Time	5.0	1.0	11.5	ns	
	OE to O _n					
t _{PZL}	Output Enable Time	5.0	1.0	12.0	ns	
	OE to O _n					
t _{PHZ}	Output Disable Time	5.0	1.0	13.5	ns	
	OE to O _n					
t _{PLZ}	Output Disable Time	5.0	1.0	12.0	ns	
	OE to On					

⁽¹⁾ Voltage Range 5.0 is 5.0V ±0.5V

Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

SNOS072B -MAY 2004-REVISED AUGUST 2011

AC Operating Requirements

Symbol	Parameter	V _{CG} (V)	T _A = -55°C to +125°C C _L = 50 pF	Units	Fig.
			Guaranteed Minimum		
t _s	Setup Time, HIGH or LOW	5.0	4.0	ns	
	D to CP				
t _h	Hold Time, HIGH or LOW	5.0	3.0	ns	
	D _n to CP				
t _s	Setup Time, HIGH or LOW	5.0	4.0	ns	
	EN to CP				
t _h	Hold Time, HIGH or LOW	5.0	3.0	ns	
	EN to CP				
t _w	CP Pulse Width	5.0	6.0	ns	
	HIGH or LOW				
t _w	CLR Pulse Width, LOW	5.0	7.5	ns	
rec	CLR to CP	5.0	4.5	ns	
-	Recovery Time				

⁽¹⁾ Voltage Range 5.0 is 5.0V ±0.5V

54ACT823

SNOS072B-MAY 2004-REVISED AUGUST 2011

www.ti.com

Capacitance

Symbol	Parameter	Max	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	4.4	pF	V _{CC} = 5.0V

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

www.ti.com/video

Microcontrollers microcontroller.ti.com Video and Imaging

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity