54ACT/74ACT825

8-Bit D Flip-Flop

General Description

The 'ACT825 is an 8-bit buffered register. They have Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included are multiple enables that allow multi-use control of the interface. The 'ACT825 has noninverting outputs and is fully compatible with AMD's Am29825.

Features

■ Outputs source/sink 24 mA

- Inputs and outputs are on opposite sides
- 'ACT825 has TTL-compatible inputs

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

TL/F/9B95-2

Pin Assignment for LCC
$D_{6} D_{5} D_{4}$ NC $D_{3} D_{2} D_{1}$

TL/F/9895-4

Functional Description

The 'ACT825 consists of eight D-type edge-triggered flipflops. These devices have TRI-STATE ${ }^{\circledR}$ outputs for bus systems, organized in a broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$ and $\overline{\mathrm{OE}}_{3}$ LOW, the contents of the flip-flops are available at the outputs. When one of $\overline{O E}_{1}, \overline{O E}_{2}$ or $\overline{O E}_{3}$ is HIGH, the outputs go to the high impedance state.

Operation of the $\overline{O E}$ input does not affect the state of the flip-flops. The 'ACT825 has Clear (CLR) and Clock Enable (EN) pins. These pins are ideal for parity bus interfacing in high performance systems.
When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW, the outputs are LOW. When CLR is HIGH, data can be entered into the flip-flops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When $\overline{\mathrm{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Inputs					Internal	Output	Function
$\overline{\mathbf{O E}}$	CLR	EN	CP	D_{n}	Q	0	
H	X	L	\sim	L	L	Z	High-Z
H	X	L	\checkmark	H	H	Z	High-Z
H	L	X	X	X	L	Z	Clear
L	L	X	X	X	L	L	Clear
H	H	H	X	X	NC	Z	Hold
L	H	H	X	X	NC	NC	Hold
H	H	L	\sim	L	L	Z	Load
H	H	L	\bigcirc	H	H	Z	Load
L	H	L	\checkmark	L	L	L	Load
L	H	L	\sim	H	H	H	Load

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
= LOW-to-HIGH Transition
$\mathrm{NC}=$ No Change

Logic Diagram

TL/F/9895-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
-0.5 V to 7.0 V
DC Input Diode Current (IK)
$V_{1}=-0.5 \mathrm{~V}$

- 20 mA
$V_{1}=V_{C C}+0.5 \mathrm{~V}$
$+20 \mathrm{~mA}$

DC Input Voltage (V_{1})
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (Iok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$V_{O}=V_{C C}+0.5 \mathrm{~V}$
$+20 \mathrm{~mA}$
DC Output Voltage (V_{0})
$+0.5 \mathrm{~V}$
DC Output Source or Sink Current (Io)
$\pm 50 \mathrm{~mA}$
DC V CC or Ground Current
Per Output Pin (ICc or IGND)
Storage Temperature (TSTG)
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J})

CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating

 ConditionsSupply Voltage ($V_{C C}$)

'AC
 'ACT

2.0 V to 6.0 V
4.5 V to 5.5 V

Input Voltage (V_{l})
Output Voltage (V_{O})
Operating Temperature (T_{A})
74AC/ACT 54AC/ACT
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
'AC Devices
$V_{\text {IN }}$ from 30% to 70% of $V_{C C}$
V_{CC} @ 3.3V, 4.5V,5.5V
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta t$)
'ACT Devices
V_{IN} from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OV to V_{cc}
OV to V_{Cc}
$125 \mathrm{mV} / \mathrm{ns}$
$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter	$V_{c c}$ (V)	74ACT		54ACT	74ACT	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} C \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } V_{C C}=0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & V_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.70 \\ 4.70 \\ \hline \end{array}$	$\begin{aligned} & 3.76 \\ & 4.76 \\ & \hline \end{aligned}$	V	$\begin{array}{ll} * V_{I N}=V_{I L} \text { or } V_{I H} \\ \mathrm{IOH}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{array}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{\|l\|} 0.001 \\ 0.001 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	Iout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & \hline \end{aligned}$	V	$\begin{array}{\|lr} \hline{ }^{*} \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{loL} & 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \\ \hline \end{array}$
lin	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
102	Maximum TRI-STATE Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=V_{I L}, V_{I H} \\ & V_{O}=V_{C C}, G N D \end{aligned}$
${ }^{1} \mathrm{CCT}$	Maximum ICC/Input	5.5	0.6		1.6	1.5	mA	$V_{1}=V_{C C}-2.1 \mathrm{~V}$
Iold	\dagger Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\mathrm{OLD}}=1.65 \mathrm{~V} \mathrm{Max}$
lohd		5.5			-50	-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160	80	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=V_{C C} \\ & \text { or GND } \end{aligned}$

[^0]AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	$V_{c c}{ }^{*}$ (V)	74ACT			54ACT		74ACT		Units	Fig. No.
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
${ }^{\prime}$ max	Maximum Clock Frequency	5.0	120	158		95		109		MHz	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay CP to O_{n}	5.0	1.5	5.5	9.5	1.0	11.5	1.5	10.5	ns	2-3, 4
${ }^{\text {t }}$ PHL	Propagation Delay CP to O_{n}	5.0	2.0	5.5	9.5	1.0	11.5	1.5	10.5	ns	2-3, 4
${ }_{\text {tPHL }}$	Propagation Delay CLR to O_{n}	5.0	2.5	8.0	13.5	1.0	18.0	2.0	15.5	ns	2-3, 4
$t_{\text {PZH }}$	Output Enable Time $\overline{O E}$ to O_{n}	5.0	1.5	6.0	10.5	1.0	11.5	1.5	11.5	ns	2-5
${ }_{\text {tpzL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	2.0	6.5	11.0	1.0	12.5	1.5	12.0	ns	2-6
$t_{\text {PHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	1.5	6.5	11.0	1.0	13.5	1.5	12.0	ns	2-5
${ }_{\text {t PLZ }}$	Output Disable Time $\overline{O E}$ to O_{n}	5.0	1.5	6.0	10.5	1.0	13.0	1.5	11.5	ns	2-6

${ }^{\bullet}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$V_{C c}{ }^{*}$ (V)			54ACT	74ACT	Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Typ	Guaranteed Minimum				
t_{s}	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	5.0	0.5	2.5	4.0	2.5	ns	2-7
t_{n}	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	5.0	0	2.5	3.0	2.5	ns	2-7
t_{5}	Setup Time, HIGH or LOW EN to CP	5.0	0	2.0	4.0	2.5	ns	2-7
t_{n}	Hold Time, HIGH or LOW $\overline{E N}$ to CP	5.0	0	1.0	3.0	1.0	ns	2-7
t_{w}	CP Pulse Width HIGH or LOW	5.0	2.5	4.5	6.0	5.5	ns	2-3
t_{w}	$\overline{\text { CLR Pulse Width, LOW }}$	5.0	3.0	5.5	7.0	5.5	ns	2-3
$t_{\text {rec }}$	$\overline{C L R}$ to CP Recovery Time	5.0	1.5	3.5	4.5	4.0	ns	2-3, 7

${ }^{\bullet}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	44	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^0]: *All outputs loaded; thresholds on input associated with output under test.
 †Maximum test duration 2.0 ms , one output loaded at a time.

