

The 'FCT373 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Inputs			Output
LE	$\overline{\text { OE }}$	$\mathbf{D}_{\mathbf{n}}$	$\mathrm{O}_{\mathbf{n}}$
H	L	H	H
H	L	L	L
L	L	X	O_{n} (no change)
X	H	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$Z=$ High Impedance State

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Electrical Characteristics

Symbol	Parameter				Units	V_{cc}	Conditions
			Min	Max			
V_{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	$\mathrm{I}_{\mathrm{OH}}=-300 \mathrm{uA}$
		54FCT	2.4		V	Min	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	54FCT		0.2	V	Min	$\mathrm{I}_{\mathrm{OL}}=300 \mu \mathrm{~A}$
		54FCT		0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$
${ }_{\text {IH }}$	Input HIGH Current			5	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
${ }_{\text {IL }}$	Input LOW Current			-5	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	High Impedance Output Current			10	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	High Impedance Output Current			-10	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$
Ios	Output Short-Circuit Current			-60	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCQ}}$	Power Supply Current			1.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}}=5.3 \mathrm{~V}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Power Supply Current			2.0	mA	Max	$\mathrm{V}_{1 \mathrm{I}}=3.4 \mathrm{~V}$
$\mathrm{I}_{\text {CCT }}$	Total Power Supply Current			5.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}=\mathrm{GND}$, $\overline{\mathrm{OE}}=$ GND, $f_{1}=10 \mathrm{Mhz}$, outputs open, one bit toggling, 50% duty cycle
				4.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}, \overline{\mathrm{OE}}=$ GND, $\mathrm{f}_{1}=10 \mathrm{Mhz}$, outputs open, one bit toggling, 50% duty cycle
$\overline{\mathrm{ICCD}}$	Dynamic I_{Cc}			0.25	$\mathrm{mA} / \mathrm{MHz}$	Max	Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}$, one bit toggling, 50\% duty Cycle

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president and general COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

