54FCT/74FCT373A

Octal Transparent Latch with TRI-STATE® Outputs

General Description

The 'FCT373A consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}}$) is LOW. When $\overline{\mathrm{OE}}$ is HIGH, the bus output is in the high impedance state.

Features

- NSC 54/74FCT373A pin and functionally equivalent to IDT 54/74FCT373A
- Eight latches in a single package
- TRI-STATE outputs for bus interfacing
- TTL input and output level compatible
- High current latch up immunity
- $\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$ (commercial) and 32 mA (military)

■ Military product compliant to MIL-STD 883

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

TL/F/10618-4

Functional Description
The 'FCT373A contains eight D-type latches with TRISTATE outputs. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE outputs are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$L E$	$\overline{\mathbf{O E}}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{n}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

[^0]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Rating (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Terminal Voltage with Respect to GND (VTERM) 54FCTA

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

74FCTA
-0.5 V to +7.0 V
Temperature under Bias (TBIAS)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
54FCTA $\quad-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature (TSTG)

74FCTA

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
54FCTA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation (P_{T})

DC Output Current (lout)
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCTA circuits outside databook specifications.

Recommended Operating

 Conditions| Supply Voltage $\left(V_{C C}\right)$ | 4.5 V to 5.5 V |
| :--- | ---: |
| 54FCTA | |
| 74FCTA | 4.75 V to 5.25 V |
| Input Voltage | 0 V to V_{CC} |
| Output Voltage | 0 V to V_{CC} |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | |
| 54FCTA | |
| 74FCTA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Junction Temperature $\left(T_{J}\right)$ | $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| CDIP | |
| PDIP | $175^{\circ} \mathrm{C}$ |

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
		Min	Typ	Max				
$\mathrm{V}_{1 \text { H }}$	Minimum High Level Input Voltage	2.0			V			
VIL	Maximum Low Level Input Voltage	0.8			v			
${ }_{1 / H}$	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=$ Max	$\begin{aligned} & V_{1}=V_{c c} \\ & V_{1}=2.7 \mathrm{~V} \text { (Note 2) } \end{aligned}$	
IL	Input Low Current			$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=$ Max	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
102	Maximum TRI-STATE Current			$\begin{gathered} \hline 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$V_{C C}=$ Max	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 \mathrm{~V} \text { (Note 2) } \\ & V_{1}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{1}=G N D \end{aligned}$	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage		-0.7	-1.2	V	$\mathrm{V}_{C C}=\mathrm{Min} ; \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{C C}=\operatorname{Max}\left(\right.$ Note 1) $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$		
V_{OH}	Minimum High Level Output Voltage	$\begin{gathered} 2.8 \\ \mathrm{~V}_{\mathrm{HC}} \\ 2.4 \\ 2.4 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & v_{\mathrm{cc}} \\ & 4.3 \\ & 4.3 \\ & \hline \end{aligned}$		v	$V_{C C}=3 \mathrm{~V}^{\prime} \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & I_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\text { Mil }) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \text { (Com) } \end{aligned}$		
VoL	Maximum Low Level Output Voltage		GND	0.2		v	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$; $\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {HC }} \mathrm{l} \mathrm{lOL}=300 \mu \mathrm{~A}$	
			$\begin{gathered} \text { GND } \\ 0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$	$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{IOL}^{2}=300 \mu \mathrm{~A} \\ & \mathrm{IOL}^{2}=32 \mathrm{~mA}(\mathrm{Mil)} \\ & \mathrm{IOL}^{2}=48 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$	
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 V \\ & f_{I}=0 \end{aligned}$		
$\Delta \mathrm{lcc}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=M a \mathrm{M} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { (Note 3) } \end{aligned}$		

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.45	mA/MHz	$V_{\mathrm{CC}}=M a x$ Outputs Open $\begin{aligned} & \overline{O E}=G N D \\ & L E=V_{C C} \end{aligned}$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
l^{\prime}	Total Power Supply Current (Note 6)		1.5	4.5	mA	$V_{C C}=M a x$ Outputs Open $\begin{aligned} & \overline{O E}=G N D \\ & L E=V_{C C} \end{aligned}$	$\begin{aligned} & V_{\text {IN }} \geq V_{H C} \\ & V_{I N} \leq 0.2 V \end{aligned}$
			1.8	5.0		$\mathrm{f}_{\mathrm{l}}=10 \mathrm{MHz}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$
			3.0	8.0		(Note 5) $\begin{aligned} & V_{C C}=M a x \\ & O E=G N D \\ & L E=V_{C C} \end{aligned}$	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
				14.5		$\mathrm{f}_{\mathrm{I}}=2.5 \mathrm{MHz}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$
V_{H}	Input Hysteresis on Clock Only		200		mV		-

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {QUIESCENT }}+\mathrm{I}_{\text {INPUTS }}+\mathrm{I}_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+f_{1} N_{1}\right)$
$I_{C C}=$ Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{1 N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fCP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{l}=$ Number of Inputs at f_{l}
All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCTA/74FCTA	74FCTA		54FCT		Units	Fig. No.
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=M I I \\ R_{L}=500 \Omega \\ C_{L}=50 p F \end{gathered}$			
		Typ	Min (Note 1)	Max	Min (Note 1)	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	4.0	1.5	5.2			ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	5.5	1.5	6.5			ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PL} 2} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5			ns	2-11
$t_{P L H}$ t_{PHL}	Propagation Delay LE to O_{n}	7.0	2.0	8.5			ns	2-8
tsu	Set Up Time High or Low D_{n} to LE	1.0	2.0				ns	2-10
t_{H}	Hold Time High or Low D_{n} to LE	1.0	1.5				ns	2-10
${ }_{\text {t }}$	LE Pulse Width High or Low	4.0	5.0				ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.
Capacitance $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter (Note 1)	Typ	Max	Units	Conditions
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested.

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 $Z=$ High Impedance
 $X=$ Immaterial
 $\mathrm{O}_{0}=$ Previous O_{0} before HIGH to Low transition of Latch Enable

