54FCT/74FCT374A

Octal D Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT374A is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE})}$ are common to all flip-flops.

Features

- NSC 54/74FCT374A is pin and functionally equivalent to IDT 54/74FCT374A
- Buffered positive edge triggered clock
- TRI-STATE outputs for bus-oriented applications
- TTL input and output level compatible
- TL inputs accept CMOS levels
- High current latch up immunity
- $\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$ (commercial) and 32 mA (military)
- Electrostatic discharge protection $\geq 2 \mathrm{kV}$
- Inherently radiation tolerant

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC
$\mathrm{O}_{3} \mathrm{D}_{2} \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{D}_{1}$

TL/F/10264-4

Functional Description

The 'FCT374A consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE})}$ LOW, the contents of the eight flipflops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Truth Table

Inputs			Outputs
$D_{\mathbf{n}}$	CP	$\overline{\mathrm{OE}}$	O_{n}
H	-	L	H
L	-	L	L
X	X	H	Z

[^0]
Logic Diagram

TL/F/10264-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Terminal Voltage
with Respect to GND (VTERM)

54FCTA	-0.5 V to 7.0 V
74FCTA	-0.5 V to 7.0 V

Temperature under Bias ($\mathrm{T}_{\mathrm{BIAS}}$)

74FCTA
54FCTA
Storage Temperature (TSTG)
74FCTA
54FCTA
Power Dissipation (P_{T})
DC Output Current (lout)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+135^{\circ} \mathrm{C} \\
\\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0.5 \mathrm{~W} \\
120 \mathrm{~mA}
\end{array}
$$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCT circuits outside databook specifications.

Recommended Operating

 Conditions| Supply Voltage (VCC) | |
| :--- | ---: |
| 54FCTA | 4.5 V to 5.5 V |
| 74FCTA | 4.75 V to 5.25 V |
| Input Voltage | 0 V to V CC |
| Output Voltage | 0 V to VCC |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ | |
| 54FCTA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| 74FCTA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Junction Temperature $\left(T_{J}\right)$ | |
| CDIP | $175^{\circ} \mathrm{C}$ |
| PDIP | $140^{\circ} \mathrm{C}$ |

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
		Min	Typ	Max				
V_{IH}	Minimum High Level Input Voltage	2.0			V			
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	0.8			V			
I_{H}	Input High Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=V_{C C} \\ & V_{1}=2.7 \mathrm{~V} \text { (Note 2) } \end{aligned}$	
IIL	Input Low Current			$\begin{array}{r} -5.0 \\ -5.0 \\ \hline \end{array}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{1}=0.5 \mathrm{~V}(\text { Note } 2) \\ & V_{1}=G N D \end{aligned}$	
loz	Maximum TRI-STATE Current			$\begin{gathered} 10.0 \\ 10.0 \\ -10.0 \\ -10.0 \end{gathered}$	$\mu \mathrm{A}$	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & V_{O}=V_{C C} \\ & V_{O}=2.7 \mathrm{~V}(\text { Note } 2) \\ & V_{O}=0.5 \mathrm{~V} \text { (Note 2) } \\ & V_{O}=G N D \end{aligned}$	
V_{IK}	Clamp Diode Voltage		-0.7	-1.2	V	$V_{C C}=M i n ; I_{N}=-18 \mathrm{~mA}$		
los	Short Circuit Current	-60	-120		mA	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 1) $\mathrm{V}_{\mathrm{O}}=$ GND		
VOH	Minimum High Level Output Voltage	2.8 3.0 $V_{\text {HC }}$ $V_{C C}$ 2.4 4.3 2.4 4.3			V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {HC; }} \mathrm{l}_{\mathrm{OH}}=-32 \mu \mathrm{~A}$		
					$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{\mathbb{H}} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \text { (Com) } \end{aligned}$		
VOL	Maximum Low Level Output Voltage	$\begin{gathered} \text { GND } \\ \text { GND } \\ 0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} 0.2 \\ 0.2 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$		V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{HC}} ; \mathrm{I}_{\mathrm{OL}}=300 \mu \mathrm{~A}$	
				$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=300 \mu \mathrm{~A} \\ & \mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}(\mathrm{Com}) \end{aligned}$			
ICC	Maximum Quiescent Supply Current		0.001		1.5	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N} \geq V_{H C}, V_{I N} \leq 0.2 V \\ & f_{I}=0 \end{aligned}$	
$\Delta l_{\text {CC }}$	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=3.4 V(\text { Note } 3) \end{aligned}$		

DC Characteristics for 'FCTA Family Devices (Continued)
Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	$\mathrm{mA} / \mathrm{MHz}$	$V_{C C}=\operatorname{Max}$ Outputs Open $\overline{O E}=G N D$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
${ }^{\text {l }}$	Total Power Supply Current (Note 6)		1.5 2.0	4.0 6.0	mA	$V_{C C}=\operatorname{Max}$ Outputs Open $\mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz}$ $\overline{O E}=G N D$ $f_{1}=5.0 \mathrm{MHz}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{HC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
			3.75 6.0	7.8 16.8		(Note 5) $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ Outputs Open $\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz} \\ & \mathrm{OE}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{I}}=2.5 \mathrm{MHz} \end{aligned}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{\mathbb{I N}} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
V_{H}	Input Hysteresis on Clock Only		200		mV		

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per TTL driven input $\left(V_{I N}=3.4 \mathrm{~V}\right)$; all other inputs at $V_{C C}$ or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $I_{c}=I_{\text {Quiescent }}+I_{\text {Inputs }}+I_{\text {DYnamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+f_{I} N_{1}\right)$
ICC $=$ Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{CP}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{I}=$ Input Frequency
$N_{I}=$ Number of Inputs at f_{l}
All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54FCTA/74FCTA	74FCTA		54FCTA		Units	Fig. No.
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=M i l \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ	Min (Note 1)	Max	Min (Note 1)	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{p} to O_{n}	4.5	2.0	6.5			ns	2-8
$\begin{aligned} & \mathrm{t}_{\mathrm{P} 7 \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	5.5	1.5	6.5			ns	2-11
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5			ns	2-11
tsu	Set Up Time High or Low $D_{n} \text { to } C_{p}$	1.0	2.0				ns	2-10
${ }^{\text {H }}$	Hold Time High or Low $D_{n} \text { to } C_{p}$	0.5	1.5				ns	2-10
t_{w}	C_{p} Pulse Width High or Low	4.0	5.0				ns	2.9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.
Capacitance $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter (Note)	Typ	Max	Unlt	Condition
$\mathrm{C}_{\text {IN }}$	Input Capacitance	6	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

Note: This parameter is measured at characterization but not tested.

[^0]: $H=$ HIGH Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial
 $Z=$ High Impedance
 $\Omega=$ LOW-to-HIGH Transition

