54FCT521 8-Bit Identity Comparator

National Semiconductor

54FCT521 8-Bit Identity Comparator

General Description

Logic Symbols

The 'FCT521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $\overline{I}_{A = B}$ also serves as an active LOW enable input.

Features

- Expandable to any word length
- Outputs sink capability of 32mA, source capability of 12 mΑ

20

19

18 •B₇

17

16 - B₆

19

14 - B₅

13

11

for LCC

 $B_5 A_6 B_6 A_7 B_7$

DS

V_{CC}

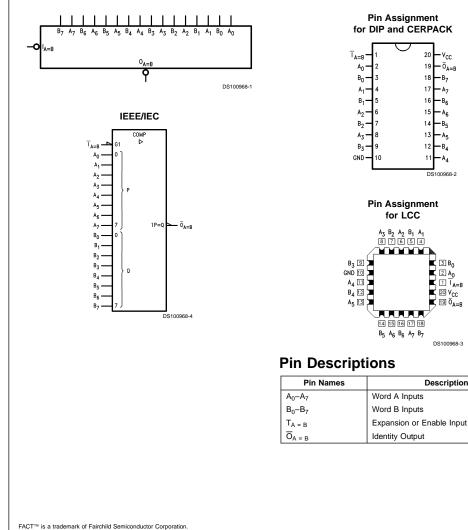
- 0_{A=B}

- A7

Α6

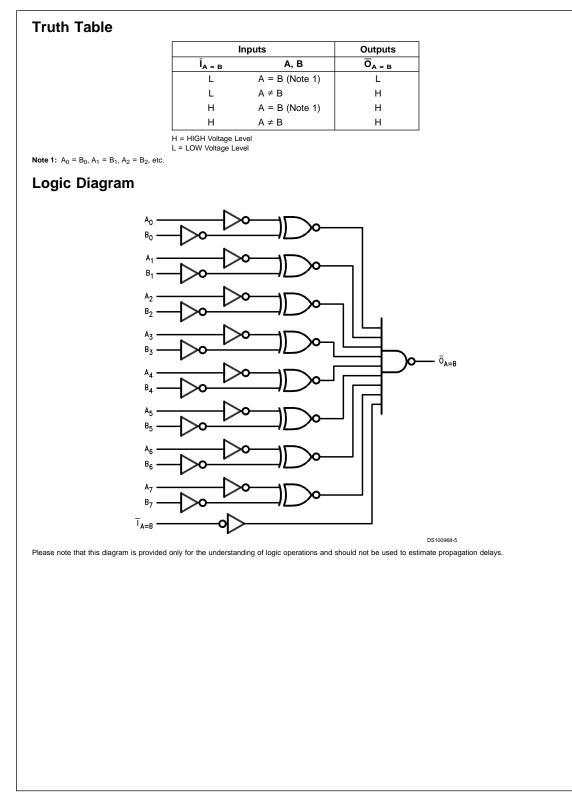
A₅ 12 - B ,

3 B₀ 2 A₀ 1 T_{A=B} 20 V_{CC}


⊑, 19 0_{A=B}

DS100968-3

Description


- TTL input and output level compatible
- CMOS power consumption
- Standard microcircuit Drawing (SMD) 5962-8854301

Connection Diagram

www.national.com

DS100968 © 1998 National Semiconductor Corporation

.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_1 = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I_{CC} or I_{GND})	±50 mA

Storage Temperature (T_{STG}) Junction Temperature (T_J) CDIP –65°C to +150°C

175°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	
FCT	4.5V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	
54FCT	-55°C to +125°C
Note 2: Absolute maximum ratings are those we to the device may occur. The databook specific	, ,

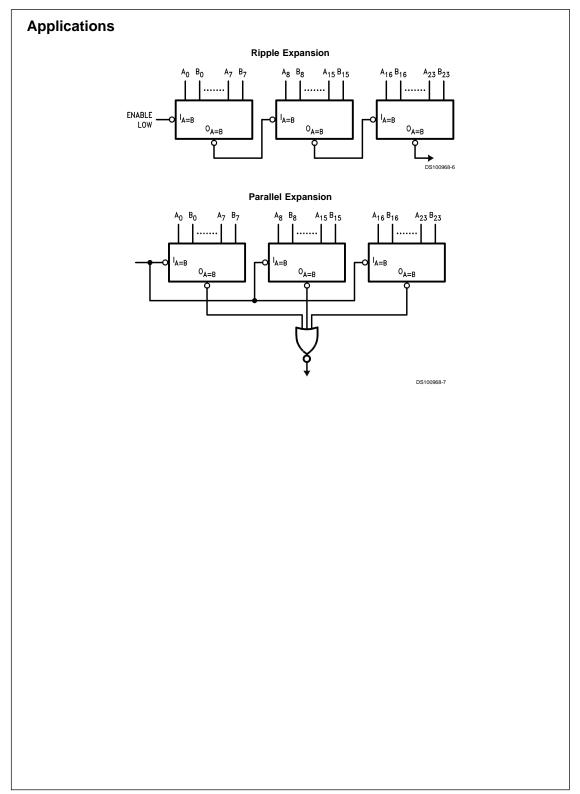
exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. National does not recommend operation of FACT[™] circuits outside databook specifications.

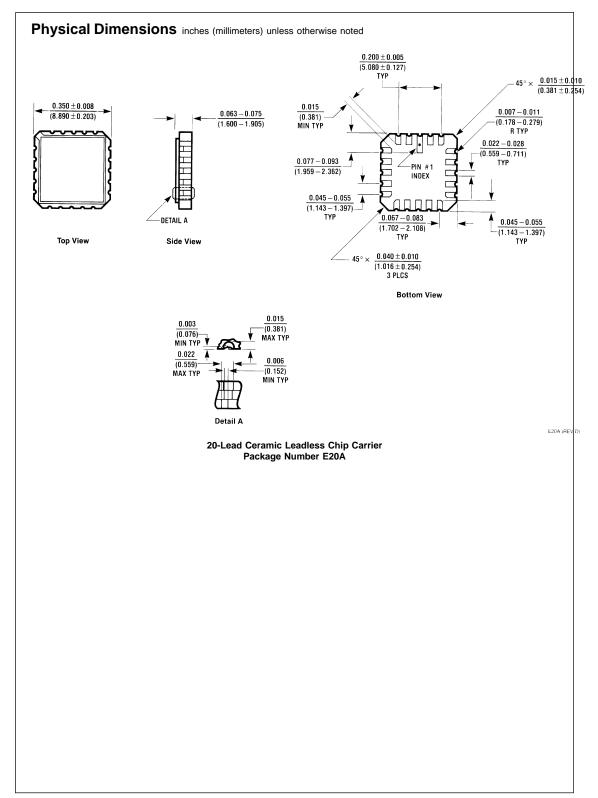
DC Electrical Characteristics for 'FCT Family Devices

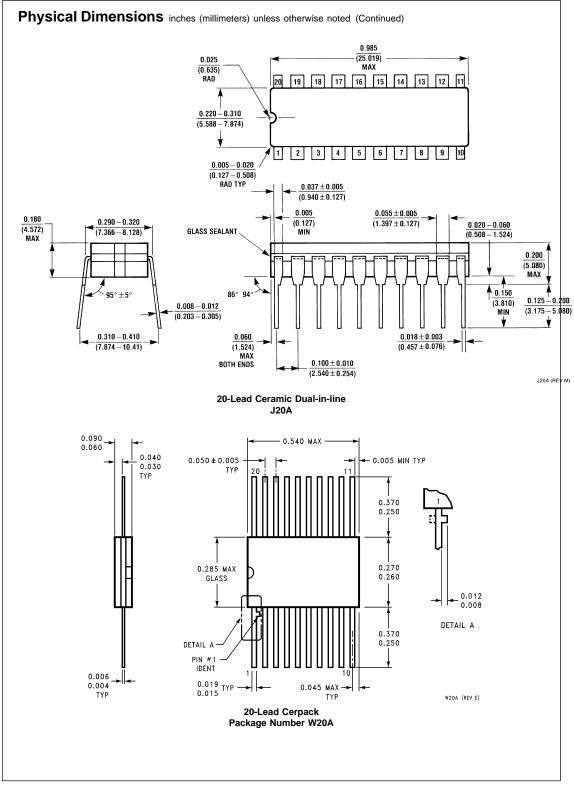
Symbol	Parameter		54FCT		Units	V _{cc}	Conditions
-			Min	Max	1	00	
VIH	Input HIGH Voltage		2.0		V		Recognized HIGH Signal
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	I _{OH} = -300 μA
		54FCT	2.4		V	Min	I _{OH} = -12 mA
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA
		54FCT		0.5	V	Min	I _{OL} = 32 mA
IIH	Input HIGH Current			5	μA	Max	$V_{IN} = V_{CC}$
I _{IL}	Input LOW Current			-5	μA	Max	$V_{IN} = 0.0V$
los	Output Short-Circuit Current			-60	mA	Max	V _{OUT} = 0.0V
Icca	Quiescent Power Supply Current			1.5	mA	Max	V_{IN} < 0.2V or V_{IN} 5.3V, V_{CC} = 5.5V
ΔI_{CC}	Quiescent Power Supply Current			2.0	mA	Max	$V_{I} = V_{CC} - 2.1V$
I _{CCD}	Dynamic I _{CC}			0.25	mA/ MHz	Max	V_{CC} = 5.5V, Outputs Open, One Bit Toggling, 50% Duty Cycle, \overline{OE}_n = GND
I _{cc}	Total Power Supply Current			5.0	mA	Max	V_{CC} = 5.5V, Outputs Open, fl = 10MHz, \overline{OE}_n = GND, One Bit Toggling, 50% Duty Cycle

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.


Symbol	Parameter	V _{cc} (V)	T _A = -55°0	Units	
			C _L = 50 pF		
		(Note	Min	Мах	
		5)			
t _{PLH}	Propagation Delay	5.0	1.5	15.0	ns
	A_n or B_n to $\overline{O}_{A=B}$				
t _{PHL}	Propagation Delay	5.0	1.5	15.0	ns
	A_n or B_n to $\overline{O}_{A=B}$				
t _{PLH}	Propagation Delay	5.0	1.5	9.0	ns
	$\overline{I}_{A = B}$ to $\overline{O}_{A = B}$				
t _{PHL}	Propagation Delay	5.0	1.5	9.0	ns
	$\overline{I}_{A=B}$ to $\overline{O}_{A=B}$				


Note 5: Voltage Range 5.0 is 5.0V ±0.5V


Capacitance

· ·

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = OPEN$
C _{PD}	Power Dissipation Capacitance	40	pF	$V_{CC} = 5.0V$

7

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

^	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
ww.na	tional.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.