National
Semiconductor

54FCT/74FCT573A
 Octal Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'FCT573A is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{O E}$) inputs.
The 'FCT573A is functionally identical to the 'FCT373A but has inputs and outputs on opposite sides.

Features

NSC 54/74FCT573A is pin and functionally equivalent to IDT 54/74FCT573A

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- $\mathrm{IOL}^{=} 48 \mathrm{~mA}$ (Com), 32 mA (Mil)
- TRI-STATE outputs for bus interfacing
- Military product compliant to MIL-STD-883
- TTL input and output level compatible
- TTL inputs accept CMOS levels

Ordering Code: See Section 8

Logic Symbols

IEEE/IEC

TL/F/10641-2

Connection Diagrams

Pln Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

TL/F/10641-4

Functional Description

The FCT573A contains eight D-type latches with TRISTATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, and the latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the latch contents are presented inverted at the outputs $\overline{\mathrm{O}}_{7}-\overline{\mathrm{O}}_{0}$. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$\overline{O E}$	LE	\mathbf{D}	$\mathbf{O}_{\mathbf{n}}$
L	H	H	H
L	H	L	L
L	L	X	$\mathrm{O}_{\mathbf{0}}$
H	X	X	Z

[^0]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Recommended Operating Conditions

Supply Voltage $\left(V_{C C}\right)$	4.5 V to 5.5 V
54FCTA	4.75 V to 5.25 V
74FCTA	0 V to V_{CC}
Input Voltage	0 V to V_{CC}
Output Voltage	
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
54FCTA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
74FCTA	
Junction Temperature $\left(T_{J}\right)$	$175^{\circ} \mathrm{C}$
CDIP	$140^{\circ} \mathrm{C}$

DC Characteristics for 'FCTA Family Devices

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $5.0 \mathrm{~V} \pm 10 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Mil: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
		Min	Typ	Max			
${ }^{\text {I }}$	Total Power Supply Current (Note 6)		1.5	4.5	mA	$V_{C C}=\operatorname{Max}$ Outputs Open	$\begin{aligned} & V_{I N} \geq V_{H C} \\ & V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
			1.8	5.0		$\mathrm{f}_{\mathrm{CP}}=10 \mathrm{MHz}$ One Bit Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
			3.0	8.0		(Note 5) $\mathrm{V}_{\mathrm{CC}}=$ Max Outputs Open $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{HC}} \\ & \mathrm{~V}_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$
				14.5		$\mathrm{f} \mathrm{CP}=2.5 \mathrm{MHz}$ Eight Bits Toggling 50\% Duty Cycle	$\begin{aligned} & V_{I N}=3.4 V \\ & V_{I N}=G N D \end{aligned}$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.
Note 2: This parameter guaranteed but not tested.
Note 3: Per $T T$ driven input ($V_{\mathbb{I N}}=3.4 \mathrm{~V}$); all other inputs at V_{CC} or GND.
Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
Note 6: $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{C P} / 2+i_{1} N_{1}\right)$
ICC = Quiescent Current
$\Delta I_{C C}=$ Power Supply Current for a TTL High Input $\left(V_{I N}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL inputs High
$N_{T}=$ Number of Inputs at D_{H}
ICCD $=$ Dynamic Current caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{CP}}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{i}=$ Number of Inputs at i_{1}
All currents are in milliamps and all frequencies are in megahertz.
AC Electrical Characteristics: See Section 2 for Waveforms

Symbol	Parameter	54/74FCTA	74FCTA		54FCTA		Units	Fig. No.
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}=C o m \\ R_{L}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{C C}=\mathrm{Mil} \\ R_{\mathrm{L}}=500 \Omega \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			
		Typ	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to O_{n}	4.0	1.5	5.2			ns	2-8
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to O_{n}	7.0	2.0	8.5			ns	2-8
$\begin{aligned} & \hline \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Output Enable Time	5.5	1.5	6.5			ns	2-11
$\begin{aligned} & \text { tphz } \\ & t_{\mathrm{tPLZ}} \\ & \hline \end{aligned}$	Output Disable Time	4.0	1.5	5.5			ns	2-11
ts	Setup Time High or Low, D_{n} to LE	1.0	2.0				ns	2-10
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time High or Low, D_{n} to LE	1.0	1.5				ns	2-10
tw	LE Pulse Width High or Low	4.0	5.0				ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	10	pF	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$

Note: This parameter is measured at characterization but not tested.

[^0]: $H=$ HIGH Voltage
 L = LOW Voltage
 Z = High Impedance
 $X=$ Immaterial
 $\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

