54LS/74LS256
 DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION - The '256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A_{0}, A_{1}), an active LOW Enable input ($\overline{\mathrm{E}})$ and an active LOW Clear input ($\overline{\mathrm{CL}}$). Each latch has a Data input (D) and four outputs ($Q_{0}-Q_{3}$).

When the Enable ($\overline{\mathrm{E}}$) is HIGH and the Clear input ($\overline{\mathrm{CL}}$) is LOW, all outputs (Q_{0} $\left.Q_{3}\right)$ are LOW. Dual 4-channel demultiplexing occurs when the $\overline{C L}$ and $\overline{\mathrm{E}}$ are both LOW. When $\bar{C} L$ is HIGH and $\overline{\mathrm{E}}$ is LOW, the selected output ($Q_{0}-Q_{3}$), determined by the Address inputs, follows D. When the Egoes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=$ LOW, $\overline{C L}=H I G H$), changing more than one bit of the Address (A_{0}, A_{1}) could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{\mathrm{E}}=\overline{\mathrm{CL}}=\mathrm{HIGH}$).

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- EASILY EXPANDABLE
- ACTIVE LOW COMMON CLEAR

ORDERING CODE: See Section 9

PKGS	$\left\|\begin{array}{l} \text { PIN } \\ \text { OUT } \end{array}\right\|$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	74LS256PC		9B
Ceramic DIP (D)	A	74LS256DC	54LS256DM	6B
Flatpak (F)	A	74LS256FC	54LS256FM	4L

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
A_{0}, A_{1}	Common Address Inputs	0.5/0.25
Da, Db_{b}	Data Inputs	0.5/0.25
$\overline{\mathrm{E}}$	Common Enable Input (Active LOW)	1.0/0.5
CL	Conditional Clear Input (Active LOW)	0.5/0.25
$Q_{0} \mathrm{a}-\mathrm{Q}_{3}$	Side A Latch Outputs	$\begin{gathered} 10 / 5.0 \\ (2.5) \end{gathered}$
$\mathrm{Q}_{0 \mathrm{~b}}-\mathrm{Q}_{3 \mathrm{~b}}$	Side B Latch Outputs	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

TRUTH TABLE

INPUTS				OUTPUTS				MODE
$\overline{\mathrm{CL}}$	\bar{E}	A0	A_{1}	Q0	Q 1	Q_{2}	Q ${ }^{1}$	
L	H	X	X	L	L	L	L	Clear
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	D L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{D} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{D} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{D} \end{aligned}$	Demultiplex
H	H	X	X	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	Q_{t-1}	$\mathrm{Q}_{\text {t-1 }}$	Memory
H	L	L	L	D	$Q_{\text {t-1 }}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\text {t-1 }}$	Addressable
H	L	H	L	Q ${ }_{\text {t-1 }}$	D	$\mathrm{Q}_{\text {t-1 }}$	$Q_{\text {t-1 }}$	Latch
H	L	L	H	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	D	$\mathrm{Q}_{\text {t-1 }}$	
H	L	H	H	$\mathrm{Q}_{\mathrm{t}-1}$	$Q_{\text {t-1 }}$	$\mathrm{Q}_{\text {t-1 }}$	D	

$t-1=$ Bit time before address change or rising edge of E
$H=$ HIGH Voltage Level L = LOW Voltage Level $X=$ Immaterial

MODE SELECTION

\bar{E}	$\overline{C L}$	MODE
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH 4-Channel Demultiplexers
H	L	Clear

LOGIC DIAGRAM

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
ICC	Power Supply Current		25	mA	$=$ Max

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$\begin{aligned} & \text { tpLL } \\ & \text { tph } \end{aligned}$	Propagation Delay \bar{E} to Q_{n}		$\begin{aligned} & 27 \\ & 24 \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay D_{n} to Q_{n}		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	ns	Figs. 3-1, 3-5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A_{n} to Q_{n}		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	ns	Figs. 3-1, 3-20
tPHL	Propagation Delay $\overline{C L}$ to Q_{n}		18	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\mathrm{ts}_{\text {S }}(\mathrm{H})$	Setup Time HIGH D_{n} to $\overline{\mathrm{E}}$	20		ns	Fig. 3-13
th (H)	Hold Time HIGH D_{n} to \bar{E}	0		ns	Fig. 3-13
$\mathrm{ts}_{\text {s }}(\mathrm{L})$	Setup Time LOW D_{n} to \bar{E}	15		ns	Fig. 3-13
th (L)	Hold Time LOW D_{n} to \bar{E}	0		ns	Fig. 3-13
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW, A_{n} to E	0		ns	Fig. 3-21
tw (L)	$\overline{\text { E Pulse Width LOW }}$	17		ns	Fig. 3-21

