CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	0.5/0.25
Ds	Serial Data Input	0.5/0.25
S	Mode Select Input	0.5/0.25
$\overline{C P}$	Clock Pulse Input (Active Falling Edge)	0.5/0.25
MR	Master Reset Input (Active LOW)	0.5/0.25
$\overline{O E}$	Output Enable Input (Active LOW)	0.5/0.25
$\mathrm{O} 0-\mathrm{O}_{3}$	3-State Register Outputs	$\begin{array}{r} 65 / 5.0 \\ (25) /(2.5) \end{array}$
Q_{3}	Flip-flop Output	$\begin{array}{r} 10 / 5.0 \\ (2.5) \end{array}$

FUNCTIONAL DESCRIPTION - The '395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a D input either from a Parallel $\left(P_{n}\right)$ input or from the preceding stage. When the Select input is HIGH, the P_{n} inputs are enabled. A LOW signal on the S input enables the serial inputs for shift-right operations, as indicated in the Truth Table.

State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse ($\overline{\mathrm{CP}}$) input. Signals on the $\mathrm{P}_{\mathrm{n}}, \mathrm{D}_{S}$ and S inputs can change when the Clock is in either state, provided that the recommended setup and hold times are ovserved. When the Sinput is LOW, a $\overline{C P}$ HIGH-LOW transition transfers data in Q_{0} to Q_{1}, Q_{1} to Q_{2}, and Q_{2} to Q3. A left-shift is accomplished by connecting the outputs back to the P_{n}^{\prime} inputs, but offset one place to the left, i.e., O_{3} to $\mathrm{P}_{2}, \mathrm{O}_{2}$ to P_{1}, and O_{1} to P_{0}, with P_{3} acting as the linking input from another package.

When the $\overline{\mathrm{OE}}$ input is HIGH , the output buffers are disabled and the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

MODE SELECT TABLE

OPERATING MODE	INPUTS @ t_{n}					OUTPUTS @ $\mathrm{t}_{\mathrm{n}+1}$			
	$\overline{\text { MR }}$	$\overline{C P}$	S	Ds	P_{n}	O	O1	O_{2}	O_{3}
Asynchronous Reset Shift, SET First Stage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & z \end{aligned}$	$\begin{aligned} & X \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$O_{0 n}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{O}_{2 n} \end{aligned}$
Shift, RESET First Stage Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & P_{n} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{P}_{0} \end{aligned}$	P_{1}	$\begin{aligned} & \mathrm{O}_{1 n} \\ & \mathrm{P}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2 n} \\ & \mathrm{P}_{3} \end{aligned}$

$t_{n}, t_{n}+1=$ Time before and after CP HIGH-to-LOW transition
$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER				UNITS	CONDITIONS
			Min	Max		
Ios	Output Short Circuit Current		-20	-100	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$
Icc	Power Supply Current	Output OFF		2925	mA	$\begin{aligned} & V_{C C}=M a x ; ~ P_{\mathrm{n}}=G n d \\ & \mathrm{CP}=7 \\ & \overline{O E}, \mathrm{DS}_{\mathrm{S}}, \mathrm{~S}=4.5 \mathrm{~V} \end{aligned}$
		Outputs ON				$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} ; \mathrm{Ds}, \mathrm{~S}=4.5 \mathrm{~V} \\ & \mathrm{OE}, \mathrm{CP}, \mathrm{P}_{\mathrm{n}}=\text { Gnd } \end{aligned}$

AC CHARACTERISTICS: $\mathrm{V}_{C C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER			UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$			
		Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	30		MHz	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}$ to O_{n}		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns	Figs. 3-1, 3-9
tPHL	Propagation Delay $\overline{M R}$ to O_{n}		35	ns	Figs. 3-1, 3-17
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	Figs. 3-3, 3-11, 3-12 $R_{L}=2 \mathrm{k} \Omega$
$\begin{aligned} & \text { tPHz } \\ & \text { tpLz } \end{aligned}$	Output Disable Time		$\begin{aligned} & 17 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & \text { Figs. 3-3, 3-11, 3-12 } \\ & R_{L}=2 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		
$\begin{aligned} & \mathrm{ts}_{\mathrm{s}}(\mathrm{H}) \end{aligned}$	Setup Time HIGH or LOW S, Ds or P_{n} to $\overline{C P}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	Fig. 3-7
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW S. Ds or P_{n} to $\overline{C P}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	Fig. 3-7
$t_{w}(L)$	$\overline{C P}$ Pulse Width LOW	18		ns	Fig. 3-9
$\mathrm{tw}^{\text {w }}$ (L)	$\overline{M R}$ Pulse Width LOW	20		ns	Fig. 3-17

