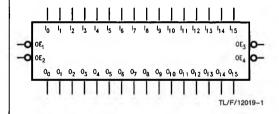
ADVANCE INFORMATION

74LVT16244 3.3V ABT 16-Bit Buffer/Line Driver with TRI-STATE® Outputs

General Description

The LVT16244 contains sixteen non-inverting buffers with TRI-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual TRI-STATE control inputs can be shorted together for 8-bit or 16-bit operation.


These bus buffers and line drivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16244 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V VCC
- Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Available in SSOP and TSSOP
- Functionally compatible with the 74 series 16244
- Latch-up performance exceeds 500 mA

Ordering Code: See Section 11

Logic Symbol

Pin Names	Description
ŌĒn	Output Enable Inputs (Active Low)
10-115	Inputs
O ₀ -O ₁₅	Outputs

	SSOP	TSSOP JEDEC
Order Number	74LVT16244MEA	74LVT16244MTD
	74LVT16244MEAX	74LVT16244MTDX
See NS Package Number	MS48A	MTD48

Connection Diagram

Pin Assignment for SSOP and TSSOP

- S		
ŌE ₁ —	1	48 - OE ₂
o _o —	2	47 - 1 ₀
o ₁ —	3	46 — I ₁
GND —	4	45 — GND
o ₂ —	5	44 - 12
o ₃ —	6	43 — I ₃
v _{cc} —	7	42 - V _{CC}
0₄ —	8	41 - 14
o ₅ —	9	40 — I ₅
GND —	10	39 — GND
o ₆ —	11	38 — I ₆
o ₇ —	12	37 – 1 ₇
o ₈ —	13	36 — I ₈
o _g —	14	35 — Ig
GND —	15	34 — GND
o ₁₀ —	16	33 — I ₁₀
o ₁₁ —	17	32 — I _{1 1}
v _{cc} —	18	31 — V _{CC}
o ₁₂ —	19	30 — I ₁₂
0,3-	20	29 — 1 ₁₃
GND —	21	28 — GND
014	22	27 — I ₁₄
o ₁₅ —	23	26 — I ₁₅
OE ₄ -	24	25 — OE ₃

TL/F/12019-2

Functional Description

The LVT16244 contains sixteen non-inverting buffers with TRI-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Truth Tables

Inputs		Outputs
ŌE ₁	I ₀ -I ₃	00-03
L	L	٦
L	Н	н
Н	X	Z

Inputs		Outputs
ŌE₃	l ₈ -l ₁₁	O ₈ -O ₁₁
L	L	L
L	Н	Н
Н	X	Z .

H = High Voltage Level

L = Low Voltage Level

Inputs		Outputs
ŌE ₂	I ₄ -I ₇	04-07
L	L	L
L	н	н
н	Х	Z

In	puts	Outputs
ŌE ₄	l ₁₂ -l ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	н
н	X	Z

X = Immaterial

Z = High Impedance

Logic Diagram

$$\overline{OE}_1$$
 O_{0-3}
 \overline{OE}_2
 O_{4-7}
 \overline{OE}_3
 O_{8-11}
 \overline{OE}_4
 O_{12-15}

TL/F/12019-3