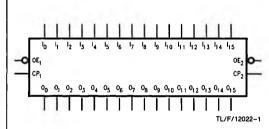
ADVANCE INFORMATION

74LVT16374 3.3V ABT 16-Bit D Flip-Flop with TRI-STATE® Outputs

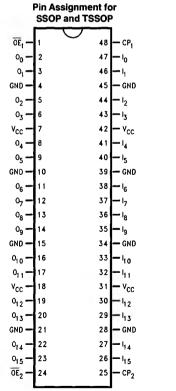
General Description


The LVT16374 contains sixteen non-inverting D flip-flops with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 16-bit operation.

These flip-flops are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16374 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Available in SSOP and TSSOP
- E Functionally compatible with the 74 series 16374
- Latch-up performance exceeds 500 mA


Ordering Code: See Section 11 Logic Symbol

Pin Names	Description
OEn	TRI-STATE Output Enable Input (Active Low)
CPn	Clock Pulse Input
10-115 00-015	Data Inputs
O ₀ -O ₁₅	TRI-STATE Outputs

	SSOP	TSSOP JEDEC
Order Number	74LVT16374MEA 74LVT16374MEAX	74LVT16374MTD 74LVT16374MTDX
See NS Package Number	MS48A	MTD48

Connection Diagram

TL/F/12022-2

LVT16374

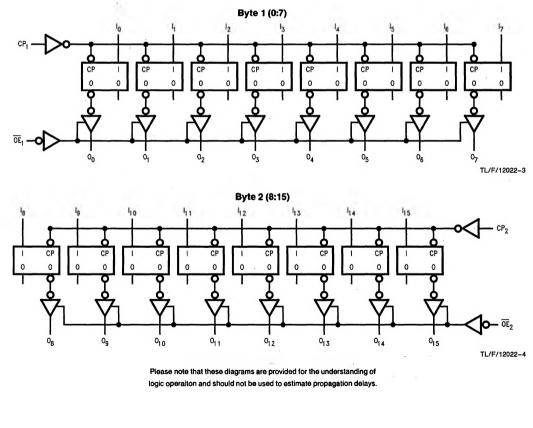
Functional Description

The LVT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the flip-flops.

Truth Tables

	Inputs	Outputs	
CP1	OE1	10-17	0 ₀ -0 ₇
5	L	н	н
~	L	L	L
L	L	×	00
х	н	x	z

Inputs			Outputs
CP2	P2 OE2	I8-I15	O ₈ -O ₁₅
5	Ľ	н	н
5	L	L	Ι L
L	L	×	00
х	н	x	z


H = High Voltage Level

L = Low Voltage Level

X = Immaterial

Z = High Impedance

Oo = Previous Oo before HIGH to LOW of CP

Logic Diagrams