REFER TO PAGE 14 FOR P, N AND Y PACKAGE PIN CONFIGURATIONS.

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8260 Arithmetic Logic Element is a monolithic gate array incorporating four full-adders structured in a look-ahead mode. The device may be used as four mutually independent exclusive NOR or AND gates by proper addressing of the inhibit lines.

As a four-bit adder, the 8260 permits high speed parallel addition of four sets of data and features both simultaneous addition on a character to character and on a bit to bit basis

within the package.

When true input variables are used, the true sum is formed at the f output. Inverted input variables produce the complement of the sum of the true variables.

The carry-outs available are: Internally Generated (C_G); Propagated (C_p); and Ripple (C_R). This gives the 8260 complete flexibility when used in Ripple Carry or Anticipated Carry Adder Systems.

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

	LIMITS				TEST CONDITIONS						OUTPUT TERMINALS (mA)				
CHARACTERISTICS						INPUT TERMINALS						TERMINALO (IIIA)			
	MIN.	TYP.	MAX.	UNITS	x _n	Yn	CIN	CINH	EINH	Cp	CG	CR	f _n		
"1" Output Voltage	2.6	3.5		٧	2.0	2.0	2.0	2.0	2.0		-0.8	-0.8	-0.8	1	
"0" Output Voltage															
f_{n} , C_G and C_R			0.4	V	0.8	0.8,	0.8	0.8	0.8		9.6	9.6	9.6	2	
"0" Input Current															
X_n and C_{INH}	-0.1		-3.2	mA	0.4	5.25		0.4							
Yn	-0.1		-3.2	mA	5.25	0.4		ļ							
E _{INH} & C _{IN1} , through C _{IN5}	-0.1		-1.6	mA			0.4		0.4					3	
"1" Input Current															
X_n and C_INH			80	μА	4.5	0V		4.5							
Y _n			80	μА	0V	4.5									
E _{INH} & C _{IN1} , through C _{IN5}			40	μΑ			4.5		4.5					4	
Input Latch Voltage				T.							•				
X_n and C_{INH}	5.5			v	10mA	ov		10mA							
Yn	5.5			V	ov	10mA		,							
E _{INH} & C _{IN1} , through C _{IN5}	5.5			V			10mA		10mA					4	
Power/Current Consumption			400/ 76.2	600/ 114.1	mW/ mA									15	

$T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

CHARACTERISTICS	LIMITS				TEST CONDITIONS INPUT TERMINALS						OUTPUT TERMINALS (mA)			
	Propagation Delay													
X_n , Y_n and C_{1N} to C_R		14	20	ns										14
X _n and Y _n to Cp and C _G		14	20	ns										14
X _n and Y _n to f _n		24	33	ns										14
C _{IN} to f _n		14	22	ns	l I									14
Output Short Circuit Current														
f_{n} , C_{G} and C_{R}	-20		-70	mA	5.0	5.0	5.0	5.0	5.0		ov	0∨	0∨	13
Ср	-40		-90	mA	0V					ov				

NOTES:

- Output source current is supplied through a resistor to ground.
- 2. Output sink current is supplied through a resistor to $V_{\mbox{CC}}$
- When testing for separate C_{IN} inputs, tie the remaining C_{IN} inputs to V_{CC}.
- 4. When testing for separate C_{IN} inputs, tie the remaining C_{IN} inputs to ground.
- 5. Keep unused inputs tied to V_{CC} unless otherwise specified.
- All voltage and capacitance measurements are referenced to the ground terminal.
- 7. All measurements are taken with ground pin tied to "0" volts.
- 8. Positive current flow is defined as into the terminal referenced.

- 9. Positive logic definition:
 - "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- Manufacturer reserves the right to make design and process changes and improvements.
- Input latch voltage test guarantees operation free of input latch-up over the specified operating power supply voltage range.
- 13. Ground one output at a time.
- 14. Measure switching times at 1.5 volt level.
- 15. V_{CC} = 5.25V.

SCHEMATIC DIAGRAM

MODE OF OPERATION

	Least Significant	CONT	ROLS		
INPUTS	CIN Inputs to be *	CINH	EINH	•	
X _n ' Y _n	0	0	0	Σ_{n}	Add
1	0	0	1		Not Used
	0	1	0	$X_nY_n + \overline{X}_n\overline{Y}_n$	Coincidence
1	0	1	1	X_nY_n	AND
$\overline{X}_{n'}$ \overline{Y}_{n}	1	0	0	$\overline{\Sigma}_{n}$	Add
-1	1	0	1		Not Used
	1	1	0	$\overline{X}_{n}\overline{Y}_{n}$ + $X_{n}Y_{n}$	Coincidence
	1	1	1	$\overline{X}_n \overline{Y}_n$	AND

^{*}Least significant of a "Multiple Package" adder system.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLES

AC TEST FIGURE AND WAVEFORMS

NOTE: Scope terminals to be ≤ ½" from Package Pins.

STEP NO.	DELAY FROM-TO	SWITCH POSITION												
		DRIVEN			WAVEFORM TYPE									
		INPUTS	X ₁	Y ₁	X ₂	Y ₂	X ₃	Y ₃	X ₄	Y ₄	CIN	EINH	CINH	
1	X _n to C _R	2	2	1	2	1	2	1	2	1	2	2	2	А, В
	X _n to Cp											<u> </u>	l	C, D
2	Yn to CR	2	,	2		2	1	2	,	2	2	2	2	А, В
	Yn to Cp		-		1	1	-	1	-	1	-	-	-	-
3	X _n ,Y _n to f _n	2	1	1	1	1	1	1	1	1	1	1	1	A, B
4	CIN to CR	2	2	2	2	2	2	2	2	2	2	2	2	A, B
5	CIN to fo	2	1	2	1	2	1	2	1	2	2	2	2	C, D

TYPICAL APPLICATIONS

The 8260 contains the control logic necessary to allow operation as a general purpose arithmetic logic device. Below, the internal carries are inhibited to effect Exclusive-NOR or coincidence operation. The 8260 may also be operated as four independent

AND gates to implement masking and similar requirements of micro-programming.

The Ripple Adder System is the simplest but also the slowest application of the 8260. The typical total addition time (input to sum output for 12-bit ripple adder is 42ns.).

The Fast Adder System provides complete carry look-ahead addition for words to 24 bits in length and is the fastest application of

the 8260 units. The typical total addition time for a 24 bit fast adder is 42ns.

