DESCRIPTION

The 8261 Fast Carry Extender is a monolithic gate array designed specifically to be used in conjunction with the 8260 Arithmetic Logic element. A 8260/8261 combination facilitates the implementation of the look-ahead technique in adder systems, thus considerably improving propagation times. The circuit structure of this array is of the familiar TTL type.

DIGITAL 8000 SERIES TTL/MSI

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
					DRIVEN INPUTS		OTHER INPUTS			
	MIN.	TYP.	MAX.	UNITS	G,A,B	P	G,A,B	P		
"1" Output Voltage	2.6	3.5		V	2.0 V				$-800 \mu \mathrm{~A}$	6
"0" Output Voltage			0.4	V	0.8V		4.75V	4.75 V	9.6 mA	7
"1" Input Current										
G Input			40	$\mu \mathrm{A}$	4.5 V		$A=0 V$			
A and B Inputs			40	$\mu \mathrm{A}$	4.5 V		$\mathrm{G}_{1}=0 \mathrm{~V}$			
P_{1} Input			40	$\mu \mathrm{A}$		4.5 V		OV		
P_{2} Input			80	$\mu \mathrm{A}$		4.5 V		OV		
P_{3} Input			120	$\mu \mathrm{A}$		4.5 V		OV		
P_{4} and P_{5} Inputs			160	$\mu \mathrm{A}$		4.5 V		OV		
" 0 ' Input Current										
G, A and B			-1.6	mA	0.4V			5.25V		
P_{1} Input			-1.6	mA		0.4V	OV	5.25 V		
P_{2} Input			-3.2	mA		0.4V	OV	5.25 V		
P_{3} Input			-4.8	mA		0.4 V	OV	5.25 V		
P_{4} and P_{5} Inputs			-6.4	mA		0.4 V	OV	5.25 V	\because	
Power/Current Consumption		95/18.1	140/26.6	$\mathrm{mW} / \mathrm{mA}$			5.25 V	OV		12
Input Latch Voltage	5.5			V	10 mA	10 mA	OV	OV		9

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS				OUTPUTS	NOTES
					DRIVEN INPUTS		OTHER INPUTS			
	MIN.	TYP.	MAX.	UNITS	G,A;B	P	G,A,B	P		
Turn-on Delay G to C_{E}										
P to C_{E}		9	14	ns						8
Turn-off Delay G to C_{E}		11	16	ns						8
P to C_{E}		8	12	ns						8
Output Short Circuit Current	-20		-70		5.0 V	OV			OV	

NOTES:

1. All voltage and current measurements are referenced to the ground terminal. Input terminals not specifically referenced are tied to $V_{\text {cc }}$.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive logic definition:
"UP" Level $=" 1 "$, "DOWN" Level $=" 0 "$.
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}. 8. Refer to AC Test Figure.
8. This test guarantees operation free of input latch-up over the specified operating power supply voltage range.
9. Manufacturer reserves the right to make design and process changes and improvements.
10. Input " 0 " thresholds for P_{1} through P_{5} inputs are guaranteed to be 0.7 volts.
11. $V_{C C}=5.25 \mathrm{~V}$.

SCHEMATIC DIAGRAM

AC TEST FIGURE AND WAVEFORMS

	SWITCH POSITION							WAVEFORM TYPE
	1	2	3	4	5	6	7	
A	2	1	1	1	1	1	1	
B	1	2	1	1	1	1	1	
G_{1}	1	1	2	1	1	1	1	
G_{2}	1	1	1	2	1	1	1	A and B
G_{3}	1	1	1	1	2	1	1	
G_{4}	1	1	1	1	1	2	1	
P_{4}								
STEP A	2	1	1	1	1	1	2	
STEP B	1	2	1	1	1	1	2	
STEP C	1	1	2	1	1	1	2	
STEP D	1	1	1	2	1	1	2	C and D
STEPE	1	1	1	1	2	1	2	
STEP F	1	1	1	1	1	2	2	

NOTES:

1. Scope terminals to be $\leqslant 1-1 / \mathbf{2}^{\prime \prime}$ from package pins.
2. Position 1 on all switches provides a logical " 1 ".

Position 2 on all switches provides a logical " 0 " when input signal is not present.
3. All measurements are made at 1.5 volts level.

TYPICAL APPLICATION

$16 \mathrm{BIT}, \mathrm{T}_{\mathrm{A}}=42 \mathrm{~ns}$, typical Fast Adder System (5 packages)

- Tied to $V_{\text {CC }}$ if not-true inputs are used, otherwise to ground. Unused $\mathbf{8 2 6 1}$ pins should be tied to $V_{\text {CC }}$.

