DESCRIPT|ON

The 8263/8264 3-Input, 4-Bit Multiplexer is a gating array whose function is analogous to that of a 4-pole, 3-position switch. Four bits of digital data are selected from one of three inputs. A 2-bit channel-selection code determines which input is to be active.

The Data Complement input controls the conditional complement circuit at the Multiplexer output to effect either inverting or non-inverting data flow.
The 8263 employs active output structures to effect minimum delays: the 8264 utilizes bare collector outputs for expansion of input terms.

The 8264 may be expanded by connecting its outputs to the outputs of another 8264. Provision is made for use of a 3-bit code to determine which Multiplexer is selected; thus,

DIGITAL 8000 SERIES TTL/MSI

eight Multiplexers may be commoned to effect a 4-pole, 24-position switch.

TRUTH TABLE

Data Input $A_{n} B_{n} C_{n}$	Channel Seleot $\mathrm{S}_{\mathbf{0}} \mathrm{S}_{1}$	Data Complement	Output Enable (8264)	Data Outputs
$A_{n} \times \times$	11	0	1	A_{n}
$\times B_{n} \times$	01	0	1	B_{n}
$\times \times C_{n}$	10	0	1	C_{n}
$\times \times \times$	00	0	1	0
$\mathrm{A}_{\mathrm{n}} \times \times$	11	1	1	A_{n}
$\times B_{n} \times$	01	1	1	E_{n}
$\times \times C_{n}$	10	1	1	\bar{C}_{n}
$\times \times \times$	00	1	1	1
$\mathbf{x} \times$	$\times \times$	\times	0	1

$X=$ Either State

LOGIC DIAGRAMS

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS								NOTES
	MIN.	TYP.	MAX.	UNITS	A_{n}	B_{n}	C_{n}	S_{0}	S_{1}	DATA COMP	OUTPUT ENABLE	OUTPUTS	
"1" Output Voltage (8263)	2.6	3.5		V	2.0 V	0.8 V		$-800 \mu \mathrm{~A}$	6				
"1" Output Leakage Current (8264)			200	$\mu \mathrm{A}$	2.0 V	0.8V	2.0 V		8				
'0'0 Output Voltage (8263)			0.4	V	0.8 V	0.8V	0.8V	2.0 V	2.0 V	0.8V		9.6 mA	7
" 0 " Output Voltage (8264)			0.4	V	0.8 V							16.0 mA	7
" 0 " Input Current													
A_{n}	-0.1		-1.6	mA	0.4 V								
B_{n}	-0.1		-1.6	mA		0.4V		0.4V					
C_{n}	-0.1		-1.6	mA			0.4V		0.4 V				
OE, DC	-0.1		-1.6	mA						0.4 V	0.4 V		
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	-0.1		-3.2	mA				0.4V	0.4 V				
"1" Input Current													
A_{n}			40	$\mu \mathrm{A}$	4.5 V			OV	OV				
B_{n}			40	$\mu \mathrm{A}$		4.5 V			OV				
C_{n}			40	$\mu \mathrm{A}$			4.5 V	OV					
OE, DC			40	$\mu \mathrm{A}$						4.5 V	4.5 V		
$\mathrm{S}_{0}, \mathrm{~S}_{1}$			80	$\mu \mathrm{A}$				4.5 V	4.5 V				

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS								NOTES
	MIN.	TYP.	MAX.	UNITS	A_{n}	B_{n}	C_{n}	S_{0}	\mathbf{S}_{1}	DATA COMP	OUTPUT ENABLE	OUTPUTS	
Propagation Delay (8263)													
A_{n} to f_{n}		17	26	ns									10
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to f_{n}		25	36	ns									10
DC to f_{n}		17	26	ns									10
Propagation Delay (8264)													
A_{n} to f_{n}		25	36	ns									10
S_{0}, S_{1} to f_{n}		25	36	ns									10
DC to f_{n}		20	30	ns									10
OE to f_{n}		20	30	ns									10
Input Voltage Rating													
A_{n}	5.5			v	10 mA			ov	OV				
B_{n}	5.5			v		10 mA			ov				
C_{n}	5.5			v			10 mA	OV					
s_{0}	5.5			v				10 mA					
S_{1}	5.5			v					10 mA				
DC	5.5			v						10 mA			
OE	5.5			v							10 mA		
Output Short Circuit Current (82S63)	-20		-70	mA								ov	9,11
Power/Current Consumption													9
		378/	420/	mW/				ov					
(8263)		72	80	mA									
		400/	475/	mW/				ov					
(8264)		76	90.4	$m A$									

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive NAND Logic Definition:
"UP" Level = "1", "DOWN" Level = "0".
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biesed.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}
8. Connect an external $1 \mathrm{k} \pm 1 \%$ resistor from V_{CC} to the output for this test.
9. $V_{c c}=5.25 \mathrm{~V}$.
10. Refer to $A C$ test figure.
11. Not more than one output should be shorted at a time.

SCHEMATIC DIAGRAMS

SCHEMATIC DIAGRAMS (Cont'd)

AC TESTING

Step No.	Delay From-To	Switching Positions																			Waveform Types
		Driven Inputs	Other Inputs																		
			A_{0}	B_{0}	C_{0}	A_{1}	81	C_{1}	A2	B_{2}	C_{2}	A_{3}	B_{3}	C_{3}	OE	OE	OE	So	S1	DC	
1	A_{n} to f_{n}	2	2	1	1	2	1	1	2	1	1	2	1	1	1	1	1	1	1	1	C, 0
2	S_{0} to f_{n}	2	3	1	1	3	1	1	3	1	1	3	1	1	1	1	1	2	1	1	A, B
3	S_{0} to f_{n}	2	1	3	1	1	3	1	1	3	1	1	3	1	1	1	1	2	1	1	C, D
4	S_{1} to f_{n}	2	1	1	3	1	1	3	1	1	3	1	1	3	1	1	1	1	2	1	C, D
5	$D C$ to f_{n}	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	C. D
6	$O E_{n}$ to f_{n}	2	1	1	1	1	1	1	1	1	1	1	1	1	*	*	*	1	1	1	C, 0

NOTE: Step number 6 is for 8264 only.

- Test one input at a time - others remein at " 1 ".

AC TEST FIGURE AND WAVEFORMS

NON-INVERTING PATHS

$t_{r}=t_{f}<3 n s$
Amplitude $=2.6 \mathrm{~V}$
PW $=200 \mathrm{~ns}$
$P R R=1 \mathrm{MHz}$

Position 2 on switch provides pulse.
Position 3 on switch provides a logical " 0 ".
3. All measuremente are mede at 1.5 V level.
4. See truth table for logical conditions.

Figure 2 illustrates a typical example using the 8263 (totem pole output) along with the 8281 (4-bit binary counter) and the 8270/71 (4-bit shift register), to implement a variable modulus counter. The 8270's act as a 3 -register memory. The outputs of the 8270's are fed to the corresponding inputs of the 8263. Now there are three different presettable 4-bit words that can be chosen by the 8264. By alternating the channel select codes, the 8281 counter is preset with one of three words and produces an output whose repetition rate is dependent on the inputs from the multiplexer.

