DIGITAL 8000 SERIES TTL/MSI

TRUTH TABLE (See Notes 1, 2 and 3)

CIN	Y	X	COUT	Σ	$\bar{\Sigma}$	
0	0	0	1	1	0	
0	0	1	1	0	1	
0	1	0	1	0	1	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	0	0	1	

NOTES:

1. $X=\bar{X} \cdot X_{c} ; Y=\overline{\bar{Y} \cdot Y_{c}}$

$$
\text { where } \bar{X}=\overline{X_{1} \cdot Y_{2}} ; \bar{Y}=\overline{Y_{1} \cdot Y_{2}}
$$

2. When \bar{X} or \bar{Y} are used as inputs, X_{1} and X_{2} or Y_{1} and Y_{2} respectively must be tied to GND.
3. When X_{1} and X_{2} or Y_{1} and Y_{2} are used as inputs, \bar{X} or \bar{Y} respectively must be left open or used to perform the WIREDAND function.

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CONDITIONS										NOTES
	MIN.	TYP.	MAX.	UNITS	X_{1}	x_{2}	X	X_{c}	V_{1}	\mathbf{Y}_{2}	\boldsymbol{Y}	$\mathbf{Y}_{\mathbf{c}}$	$c_{\text {IN }}$	OUTPUTS	
"1" Output Voltage	2.6	3.5		v	0.8 V	0.8 V	2.0 V	2.0 V	0.8 V	0.8 V	0.8 V	2.0 V	0.8V	$-500 \mu \mathrm{~A}$	6
" 0 " Output Voltage " 0 " Input Current			0.4	V	0.8 V	0.8 V	2.0 V	2.0 V	0.8 V	0.8 V	2.0 V	2.0 V	0.8 V	16mA	7
x_{1}	-0.1		-1.6	mA	0.4 V	4.5V									
\underline{x}_{2}	-0.1		-1.6	mA	4.5 V	0.4 V									
${ }^{x}$	-0.1		-2.6	mA	0.0 V	0.0 V	0.4V	4.5 V							
X_{c}	-0.1		-1.6	mA	0.0 V	0.0 V		0.4V							
Y_{1}	-0.1		-1.6	mA					0.4 V	4.5 V					
$\frac{Y}{Y}$	-0.1		-1.6	mA					4.5 V	0.4 V					
Y_{C}	-0.1 -0.1		-2.6	mA					0.0 V 0.0 V	0.0 V 0.0 V	0.4 V	$\begin{array}{\|l\|} 4.5 \mathrm{~V} \\ 0.4 \mathrm{~V} \end{array}$			
${ }_{\text {ClN }}^{\text {c }}$	-0.1		-8.0	mA									0.4 V		
X_{1}			40	$\mu \mathrm{A}$	4.5 V										
x_{2}			40	$\mu \mathrm{A}$	0.0 V										
X_{Y}			40	$\mu \mathrm{A}$			0.0V	4.5 V							
Y_{1}			40	$\mu \mathrm{A}$					4.5 V	4.5 V					
Y_{2}			40	$\mu \mathrm{A}$					0.0 V	0.4 V					
Y_{c}			40	$\mu \mathrm{A}$							0.0 V	4.5V			
CIN			160	$\mu \mathrm{A}$	0.0 V	0.0 V	-		0.0 V	0.0 V			4.5 V		
$\begin{gathered} \text { put } \\ x_{1} \end{gathered}$	5.5			v		0.0V									
x_{2}	5.5			v	0.0V	10 mA									
X_{c}	5.5			v			0.0 V	10 mA							
Y_{1}	5.5			v					10 mA	0.0 V					
Y_{2}	5.5			V					0.0 V	10 mA					
Y_{c}	5.5			v							0.0 V	10 mA			
CIN	5.5			V									10 mA		

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

CHARACTERISTICS	LIMITS								TEST CONDITIONS						NOTES
	MIN.	TYP.	MAX.	UNITS	X_{1}	x_{2}	X	X_{c}	Y_{1}	V_{2}	Y	$Y_{\text {c }}$	$C_{\text {IN }}$	Outputs	
Power/Current Consumption Output Short		$\begin{aligned} & 1521 \\ & 29 \end{aligned}$	$\begin{aligned} & 185 / \\ & 35 \end{aligned}$	$\begin{gathered} \mathrm{mW} / \end{gathered}$											14
Circuit Current (Σ)	-18		-57	mA	0.0 V	0.0V			0.0V	0.0 V	0.0V		2.0 V	0.0 V	11, 14
Circuit Current ($\bar{\Sigma}$)	-18		-57	mA	0.0V	0.0 V			0.0V	0.0V			0.0 V	0.0V	11, 14
Output Short ${ }^{\text {che }}$						0.0v									
Circuit Current ($\overline{\mathrm{C}}_{\text {out }}$) $t_{t d} 1 C_{\text {in }}$ to $\overline{\mathrm{C}}_{\text {out }}$	-18		$\begin{array}{r} -70 \\ 13 \end{array}$	mA	0.0 V	0.0V				0.0V			0.0 V	0.0V	$11,14$
$\mathrm{t}_{\text {pd }}{ }^{1} \mathrm{C}_{\text {in }}$ to $\mathrm{C}_{\text {out }}$ $\mathrm{t}_{\mathrm{pd}} \mathrm{OC}_{\text {in }}$ to $\overline{\mathrm{C}}_{\text {out }}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$											$\begin{aligned} & 8 \\ & 8 \end{aligned}$
${ }_{t_{\text {pd }}} 1 \mathrm{Y}_{\mathrm{c}}$ to $\overline{\mathrm{C}}_{\text {out }}$		20	25	ns											8
${ }_{\text {tod }} \mathrm{Or}_{\mathrm{c}}$ to $\mathrm{C}_{\text {out }}$		20	25	ns											8
$\mathrm{t}_{\mathrm{pd}} 1 \times \mathrm{X}_{\mathrm{c}}$ to Σ		35	45	ns											8
$\mathrm{t}_{\mathrm{pd}} 0 \mathrm{X}_{\mathrm{c}}$ to $\mathrm{\Sigma}$		35	45	ns											8
${ }^{\text {tpd }} 1 \mathrm{Y}_{\mathrm{c}}$ to $\bar{\Sigma}$		25	35	ns											8
${ }^{\text {pd }}$ O $0 Y_{c}$ to $\bar{\Sigma}$		25	35	ns											8
$t_{\text {pd }} X_{1}, x_{2}$ to \bar{X}		30	40	ns											8,9
${ }_{t p d} 0 X_{1}, X_{2}$, to \bar{X}		15	20	ns											8,9
${ }^{\text {pod }} 1 \mathrm{Y}_{1}, \mathrm{Y}_{2}$, to \bar{Y}		30	40	ns											8.9
$\mathrm{t}_{\mathrm{pd}} \mathrm{OY}_{1}, \mathrm{Y}_{2}$, to $\overline{\mathrm{Y}}$		15	20	ns											8.9

NOTES:

1. All voltage measurements are referenced to the ground terminal Terminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive logic definition:
"UP" Level = "1", "DOWN" Level = "0'".
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
6. Output source current is supplied through a resistor to ground.
7. Output sink current is supplied through a resistor to V_{CC}
8. Refer to AC Test Figure.
9. This test is a measure of the required worst-case data set-up time.
10. Manufacturer reserves the right to make design and process changes and improvements.
11. Not more than one output should be shorted at a time.
12. This test guarantees operation free of input latch-up over the specified operating power supply voltage range.
13. The total time required to perform the ADD function may be determined by summing the delays from X_{1}, X_{2} to \bar{X} or Y, Y_{2} to \bar{Y} with the delay from X_{C} or Y_{C} to Σ or $\bar{\Sigma}$.
14. $V_{C C}=5.25$ volts.

AC TEST FIGURE AND WAVE FORMS

NOTES:

1. Perform test in accordance with test table.
2. Each output is tested separately.
3. Voltage values are with respect to network GND terminal.
4. Inputs and outputs not otherwise specified are open.
5. The generator has the following characteristics:
6. Capacitance shown include probe and jig capacitance.
$V_{\text {gen }}=2.6 \mathrm{~V}, \mathrm{tr}=\mathrm{tf} \leqslant 15 \mathrm{~ns} . \mathrm{PW}=0.5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$.
7. All resistances are in ohms.

TEST TABLE (See Note 5)

TEST NO.	OUTPUTS UNDER TEST	APPLY INPUT A TO	APPLY INPUT B TO	APPLY +2.6V TO	APPLY GND TO	OUTPUT LOADING TO

SCHEMATIC DIAGRAM

TYPICAL APPLICATIONS

N-BIT PARALLEL ADDER

NOTES:
To expand storage register for serial/parallel operation, connect D_{0} to D_{s} of next stage and common the mode control lines and the clock line of the first stage to their respective second stage equivalents.

- NOTE:

To expand output register for paraliel outputs common clock, shift and load lines with their respective counterparts. For serial data output. also connect D_{0} of first register to D_{s} of next register.

