

256-BIT BIPOLAR RAM (256x1 RAM) | 82516 (82S16 TRI-STATE) (82S17 OPEN COLLECTOR)

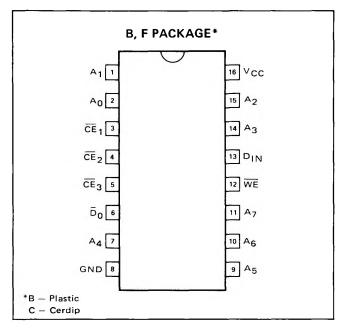
FEBRUARY 1975 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S16 and 82S17 are Schottky clamped TTL, read/ write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to $25\mu A$ for a "1" level, and $-250\mu A$ (S82S16/17) or $-100\mu A$ (N82S16/17) for a "0" level.

During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.

Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

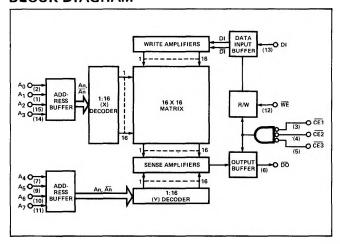

Both 82S16 and 82S17 devices are available in the commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N82S16/17, B or F. For the military temperature range $(-55^{\circ}\text{C to} + 125^{\circ}\text{C})$ specify S82S16/17, F only.

FEATURES

- ORGANIZATION 256 X 1
- ADDRESS ACCESS TIME: S82S16, S82S17 - 70ns, MAXIMUM N82S16, N82S17 - 50ns, MAXIMUM
- WRITE CYCLE TIME: S82S16, S82S17 - 70ns, MAXIMUM N82S16, N82S17 - 55ns, MAXIMUM
- POWER DISSIPATION 1.5mW/BIT TYPICAL
- INPUT LOADING: S82S16, S82S17 - $(-250\mu A)$ MAXIMUM N82S16, N82S17 - (-100 μ A) MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT **DURING WRITE**
- ON-CHIP ADDRESS DECODING
- 16 PIN CERAMIC DIP
- OUTPUT OPTION: **TRI-STATE - 82S16 OPEN COLLECTOR - 82S17**

APPLICATIONS BUFFER MEMORY WRITABLE CONTROL STORE **MEMORY MAPPING PUSH DOWN STACK SCRATCH PAD**

PIN CONFIGURATION



TRUTH TABLE

	1.4	(Z= 9.)		DO	UT
MODE	CE*	WE	DIN	82\$16	82S17
READ	0	1	Х	STORED DATA	STORED DATA
WRITE "0"	0	0	0	1	1
WRITE "1"	0	0_	1	0	0
DISABLED	1	Х	Х	High-Z	1

^{*&}quot;0" = All CE inputs low; "1" = one or more CE inputs high.

BLOCK DIAGRAM

X = Don't care.

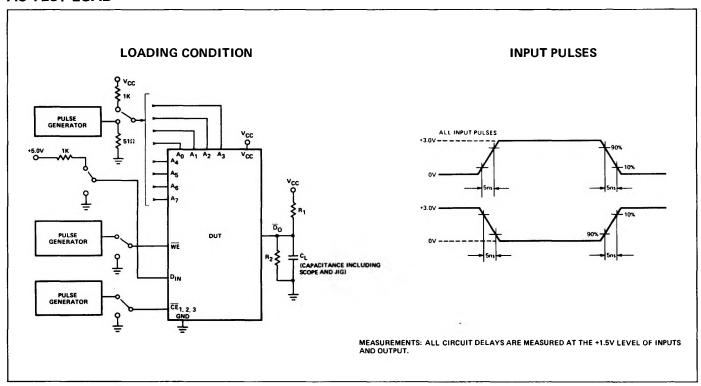
ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{IN}	Input Voltage	+5.5	Vdc
Vol	JT High Level Output Voltage (82S17)	+5.5	Vdc
٧o	Off-State Output Voltage (82S16)	+5.5	Vdc
T _A	Operating Temperature Range S82S16/17 N82S16/17	−55° to +125° 0° to +75°	°C °C
T_{stg}	Storage Temperature Range	-65° to +150°	°C

S82S16/17 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5V N82S16/17 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V **ELECTRICAL CHARACTERISTICS**

DADAMETED	TEST CONDITIONS	N82S16/17			S82S16/17				
PARAMETER	TEST CONDITIONS	MIN	TYP ²	MAX	MIN TYP2		MAX	UNIT	NOTES
High-Level Input Voltage	V _{CC} = MAX	2.0			2.0			V	1
Low-Level Input Voltage	V _{CC} = MIN			0.85			0.8	V	1
Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -12mA		-1.0	-1.5		-1.0	-1.5	V	1, 8
High-Level Output Voltage (82S16)	V _{CC} = MIN, I _{OH} = -3.2mA	2.6			2.4			٧	1, 6
Low-Level Output Voltage	V _{CC} = MIN, I _{OL} = 16mA		0.35	0.45		0.35	0.5	٧	1, 7
Output Leakage Current (82S17)	V _{OUT} = 5.5V		1	40		1	40	μΑ	5
Hi-Z State Output	V _{OUT} = 5.5V]	1	40		1	50	μΑ	5
Current (82S16)	V _{OUT} = 0.45V	1_	-1	-40		-1	-50	μΑ	5
High-Level Input Current	$V_{CC} = MAX, V_{IN} = 5.5V$		1	25		1	25	μΑ	8
Low-Level Input Current	$V_{CC} = MAX, V_{IN} = 0.45V$		-10	-100		-10	-250	μΑ	8
Short-Circuit Output Current (82S16)	V _{CC} = MAX, V _O = 0V	-20		-70	-20		-70	mA	3
V _{CC} Supply Current	V _{CC} = MAX		80	115		80	120	mA	4
V _{CC} Supply Current (82S16/17)	$V_{CC} = MAX, T_A = +125^{\circ}C$						99	mA	4
Input Capacitance	V _{IN} = 2.0V		5			5		pF	
Output Capacitance	V _{OUT} = 2.0V		8			8		pF	ļ
	Low-Level Input Voltage Input Clamp Voltage High-Level Output Voltage (82S16) Low-Level Output Voltage Output Leakage Current (82S17) Hi-Z State Output Current (82S16) High-Level Input Current Low-Level Input Current Short-Circuit Output Current (82S16) V _{CC} Supply Current (82S16/17) V _{CC} Supply Current (82S16/17) Input Capacitance	High-Level Input Voltage Low-Level Input Voltage Input Clamp Voltage VCC = MIN Input Clamp Voltage VCC = MIN, In = -12mA VCC = MIN, IOH = -3.2mA Voltage (82S16) Low-Level Output Voltage Output Leakage Current (82S17) VOUT = 5.5V VOUT = 5.5V VOUT = 0.45V VCC = MAX, VIN = 5.5V VCC = MAX, VIN = 0.45V VCC = MAX, VIN = 0.45V	High-Level Input Voltage Low-Level Input Voltage Input Clamp Voltage VCC = MAX VCC = MIN Input Clamp Voltage VCC = MIN Input Clamp VCC = MAX VIN = 5.5V VCC = MAX VIN = 5.5V VCC = MAX VIN = 0.45V VCC = MAX VIN = 0.45V VCC = MAX VCC = MAX	TEST CONDITIONS MIN TYP2	TEST CONDITIONS	TEST CONDITIONS	High-Level Input Voltage Low-Level Input Voltage Low-Level Input Voltage Input Clamp Voltage VCC = MIN VCC = MIN Input Clamp Voltage VCC = MIN Input Clamp VCC = MIN Input Clamp Voltage VCC = MIN Input Clamp Voltage VCC = MIN Input Clamp VCC = MIN Input Clamp VCC = MAX VIN = 5.5V VCC = MAX VIN = 5.5V VCC = MAX VIN = 0.45V VCC = MAX VCC =	TEST CONDITIONS	Test conditions

NOTES:

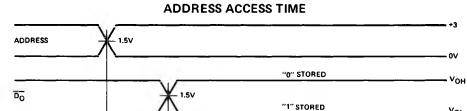

- 1. All voltage values are with respect to network ground terminal.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 3. Duration of the short-circuit should not exceed one second.
- 4. I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 5. Measured with VIH applied to CE1, CE2 and CE3.
- Measured with a logic "0" stored and V_{1L} applied to CE₁, CE₂ and CE₃.
 Measured with a logic "1" stored. Output sink current is supplied through a resistor to V_{CC}.
- 8. Test each input one at the time.

SWITCHING CHARACTERISTICS

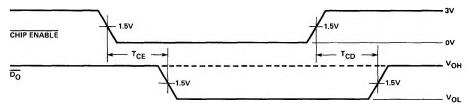
\$82\$16/17 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5V N82\$16/17 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V

PARAMETER		TT0T 0011D1T10110	S82S16/17			N82S16/17			
		TEST CONDITIONS	MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	UNIT
Propaga	ation Delay								
T _{AA}	Address Access Time			40	70		40	50	ns
T_{CE}	Chip Enable Access Time	$R_1 = 270\Omega$		30	40		30	40	ns
T _{CD}	Chip Enable Output Disable Time	$R_2 = 600\Omega$ $C_L = 30pF$		30	40		30	40	ns
T_{WD}	Write Enable to Output Valid Time			30	55		30	40	ns
Write S	et-up Times				•			•	
T _{WSA}	Address to Write Enable	$R_1 = 270\Omega$	20	5		20	5		ns
T_{WSD}	Data In to Write Enable	$R_2 = 600\Omega$	50	40		40	30		ns
T _{WSC}	CE to Write Enable	$C_L = 30pF$	10	0		10	0		ns
Write H	lold Times					•	-		
T _{WHA}	Address to Write Enable	$R_1 = 270\Omega$	10	0		5	0		ns
T_{WHD}	Data In to Write Enable	$R_2 = 600\Omega$	10	0		5	0		ns
T _{WHC}	CE to Write Enable	C _L = 30pF	10	0		5	0		ns
T _{WP}	Write Enable Pulse Width	Note 2	40	20		30	15		ns

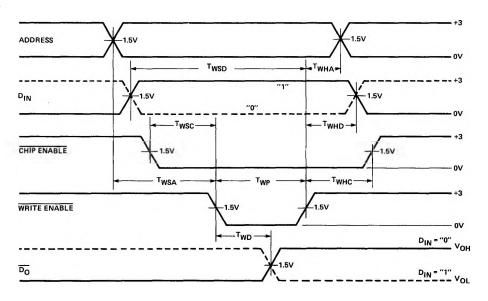
AC TEST LOAD



NOTES:


- 1. Typical values are at V_{CC} = +5.0V, and T_A = +25°C.
- 2. Minimum required to guarantee a WRITE into the slowest bit.

SWITCHING PARAMETERS MEASUREMENT INFORMATION


READ CYCLE

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

T_{CE}	Delay between beginning of CHIP ENABLE low
	(with ADDRESS valid) and when DATA OUTPUT
	becomes valid.

T_{CD} Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.

T_{AA} Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

T_{WSC} Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

T_{WHD} Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TWP Width of WRITE ENABLE pulse.

T_{WSA} Required delay between beginning of valid ADD-RESS and beginning of WRITE ENABLE pulse.

T_{WSD} Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.

T_{WD} Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.

T_{WHC} Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.

T_{WHA} Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.