REFER TO PAGE 18 FOR B, E AND R PACKAGE PIN CONFIGURATIONS.

DESCRIPTION

The 8T04 consists of the necessary logic to decode a 4 -bit BCD code to seven segment (0 through 9) readout, as well as some selected signs and letters.

Incorporated in this device is a blanking circuit which turns all segments off when activated. The blanking circuit allows suppression of all numerically insignificant zeros, thereby presenting an easily read display.

DIGITAL 8000 SERIES TTL/MSI

Also included is the necessary circuitry to implement suppression of leading and/or trailing zeros. A Lamp Test control is provided to turn all segments on. The Lamp Test allows the viewer to check the validity of the display lamps.

High performance bare collector output transistors are used in the 8T04 for directly driving incandescent lamps or common anode LED displays. -

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Output source current is supplied through a resistor to ground.
3. All measurements are taken with
4. Output sink current is supplied through a resistor to ${ }^{\mathbf{C C}}$ -
5. Positive current is defined as into the terminal referenced.
6. See truth table: "1" Threshold $=2.0 \mathrm{~V}$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$.
7. Positive NAND Logic Definition:

"UP" Level $=" 1 "$ " "DOWN" $=" 0$ "
8. Connect an external $1 \mathrm{k} \pm 1 \%$ resistor to the output for this test.
9. This test guarantees operation free of input latch-up over the specified operating supply voltage range.
10. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
11. Manufacturer reserves the right to make design and process changes and improvements.
12. Measurements apply to each gate element independently.
13. $V_{C C}=5.25 \mathrm{~V}$.

TEST FIGURE FOR " 0 " OUTPUT VOLTAGE

Each output is tested separately in the ON state.

SCHEMATIC DIAGRAM

TRUTH TABLE

INPUTS						BI/RBO	OUTPUTS							
INPUT CODE				LAMP TESTLT	RBI		OUTPUT STATE							DISPLAY CHARACTER
d	c	b	a			NOTE	A	B	c	D	E	F	G	
x	x	x	x	0	x	x	0	0	0	0	0	0	0	$日$
x	x	X	x	1	x	(0	1	1	1	1	1	1	1	BLK
0	0	0	0	1	0	(Note 0 \& 2)	1	1	1	1	1	1	1	BLK
0	0	0	0	1	1	${ }^{\text {ate }}$	0	0	0	0	0	0	1	E
0	0	0	1	1	X	1	1	0	0	1	1	1	1	,
0	0	1	0	1	x	1	0	0	1	0	0	1	0	2
0	0	1	1	1	x	1	0	0	0	0	1	1	0	3
0	1	0	0	1	x	1	1	0	0	1	1	0	0	4
0	1	0	1	1	X	1	0	1	0	0	1	0	0	5
0	1	1	0	1	x	1	1	1	0	0	0	0	0	i
0	1	1	1	1	x	1	0	0	0	1	1	1	1	7
1	0	0	0	1	x	1	0	0	0	0	0	0	0	8
1	0	0	1	1	x	1	0	0	0	1	1	0	0	c_{1}
1	0	1	0	1	X	1	1	1	1	1	1	1	0	-
1	0	1	1	1	x	1	1	1	1	1	1	1	1	BLK
1	1	0	0	1	X	1	0	0	0	1	0	0	0	P
1	1	0	1	1	x	1	1	1	0	1	1	1	1	$1 \cdot$
1	1	1	0	1	x	1	1	1	1	0	0	0	1	L-
1	1	1	1	1	x	1	1	1	1	1	1	1	1	BLK

*COMMA
$X=$ Don't care, either " 1 " or " 0 ".
BI/RBO is an internally wired OR output.
NOTE:

1. $\mathrm{BI} / \mathrm{RBO}$ used as input.
2. $B I /$ RBO should not be forced high when a, b, c, d, RBI terminals are low, or damage may occur to the unit.

