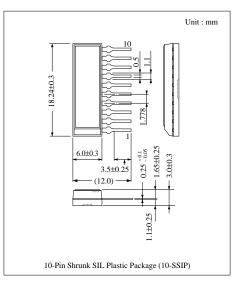
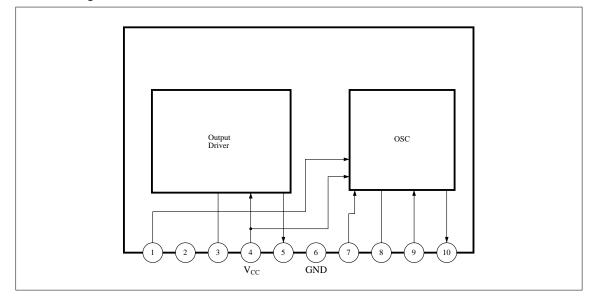
AN3370K


Flying-Erase IC

Overview


The AN3370K can amplify high-frequency current generated by the built-in oscillator and drive the Flying-erase head. This IC also allows to set an oscillation frequency and an output current optionally with external constants according to the erase head.

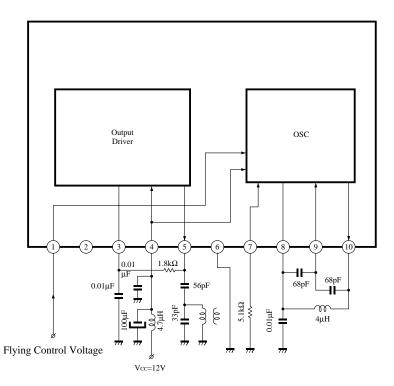
Features

- Built-in high-accuracy, stable oscillator.
- Capable of varying output current value and an oscillation frequency with external constants.

Block Diagram

Parameter	Symbol	Rating	Unit		
Supply voltage	V _{CC}	12.6	V		
Power dissipation	PD	500	mW		
Operating ambient temperature	T _{opr}	- 20 to + 70	°C		
Storage temperature	T _{stg}	- 55 to +150	°C		

■ Absolute Maximum Ratings (Ta=25°C)

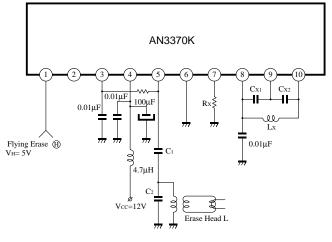

Recommended Operating Range ($Ta = 25^{\circ}C$)

Parameter	Symbol	Range		
Operating supply voltage range	V _{CC}	10.5V to 12.5V		

■ Electrical Characteristics (V_{CC}=12V, Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Supply current	I _{CC}	$V_1 = 5V$	20	28	36	mA
Oscillation output amplitude	V ₀₁	$V_1 = 5V, R_L = 300\Omega$	8	9		V _{PP}
Oscillation frequency	fo	$V_1 = 5V, R_L = 300\Omega$	11	11.55	12.1	MHz
Oscillation output amplitude	V _{O2}	$V_1 = 0V, \ R_L = 300\Omega$			10	mV_{PP}
Flying ON	V _{1H}		3.5			V
Flying OFF	V _{1L}				0.8	V

Application Circuit



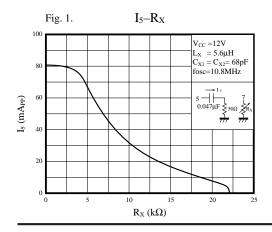
Note) Do not apply a voltage (0V included) to the Pin2 from the external.

Pin Descriptions

Pin No.	Pin name	Typ. waveform	Description	I/O impedance	Equivalent circuit
1	Flying erase control pin		Flying erase ON/OFF control pin. ON when 3.5V or more is applied, and OFF when 0.8V or less is applied.	3ΜΩ	
2			Do not apply a voltage from the external.	60kΩ	
3	Feedback pin		Feedback pin to obtain a DC volt- age by filtering an output signal via an external capacitor		(5) 10kΩ (3) (9) 77
4	Power supply		Power supply pin. Apply 12V typically from the external.	_	
5	Output pin	6V +	High-frequency current	10kΩ	5 <u>10kΩ</u> 3
6	GND				
7	Oscillation input pin		It is possible to change the current which can be taken out of an out- put, by varying the resistor between this pin and GND.	NPN T _r emitter	2V (7)
8	Reference voltage pin		Generates a reference voltage of $1/2 V_{CC}$ (approx. 6V)	NPN T _r emitter	6V - 8
9	Oscillation feedback pin	3.4V	A signal from Pin10 oscillation output is divided by the capacitor and is fed back.	3kΩ	
10	Oscillation output pin	6V +	Oscillates at the frequency deter- mined by L, C of the Pins8, 9, 10	6.2kΩ	

Supplementary Explanation

1) Internal Oscillation Frequency


An internal oscillation frequency is determined by the following expression. Set C_{X1} , C_{X2} , and L_X according to a frequency.

In order to obtain stable oscillation, set C_{X1}/C_{X2} near 1 and absolute value of C_{X1} , C_{X2} to such a considerable extent that an internal IC capacitance (approx. 5pF) and an external PCB capacitance can be ignored.

2) R_x

Output current amplitude from the IC is determined by the external resistor R_X of the Pin7 ; it is approximately as shown in Fig. 1. Therefore, use within the following range. I₃=20mA_{pp} to 65mA_{pp}.

- Do not apply the Pin1 voltage when V_{CC} is off. Use the Pin2 voltage open.
- Characteristic Curve

4) Output Dynamic Range

Since the output pin (5) dynamic range of the AN3370K is $8V_{PP}$ (at $V_{CC}=12V$), set a combination of C_1 , C_2 , and erase head inductance (L) so that the following will be ensured. I₅ (mA_{PP}) × load impedance < $8V_{PP}$.

- 5) Serial and Parallel Resonance Points
 - Serial resonance $f_1 = \frac{1}{2\pi \sqrt{L (C_1 + C_2)}}$ (2) frequency

Since Pin5 amplitude is minimized at a point of f_1 , set f_1 so that it will almost coincide with f_{OSC} .

• Parallel resonance frequency Suppose the internal capacitance of the Pin5 is C₅, then parallel resonance frequency is

$$f_2 = \frac{L}{2\pi\sqrt{L\left(C_2 + \frac{C_5 \cdot C_1}{C_5 + C_1}\right)}} \quad \cdots (3)$$

Although an erase head current is maximized at this point, set $f_2/f_{OSC} \stackrel{\scriptscriptstyle \sim}{=} 1.25$ to 1.4

