

<u>AN556</u>

Implementing a Table Read

Author: Stan D'Souza Microchip Technology Inc.

INTRODUCTION

This application note shows how to implement a table look-up for the following devices:

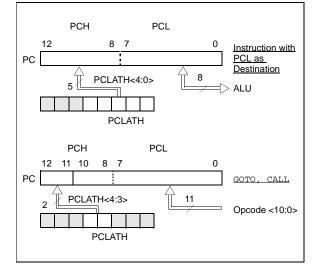
- PIC12CXXX
- PIC12CEXXX
- PIC16CXXX
- PIC16CEXXX
- PIC16FXXX

The examples shown are for the PIC16CXXX family. An explanation of differences for the PIC16C5X family is at the end of this application note.

To access data in program memory, a table read operation must be performed. The table consists of a series of retlw K instructions where, the 8-bit table constants are assigned to the literal K. The first instruction in the table computes the offset to the table by using addwf PCL, F and consequently, the program branches to the appropriate retlw K instruction (Example 1).

EXAMPLE 1:

```
offset ;load offset in w req
   movlw
   call
           Table
Table:
           PCL,F ;add offset to pc to
   addwf
                   ;generate a computed goto
   retlw
           'A'
                   ;return the ASCII char A
           'B'
   retlw
                   ;return the ASCII char B
           ' C'
   retlw
                   ;return the ASCII char C
    .
    .
```


The method is straight forward, however, certain precautions have to be exercised when doing a table read in the PIC16CXXX.

IMPLEMENTATION

Program Counter Loading

The Program Counter (PC) in the PIC16CXXX is 13bits wide. The low 8-bits (PCL) are mapped in RAM at location 02h and are directly readable and writable. The high 5-bits are not accessible directly and can only be written through the PCLATH register (Figure 1). The PCLATH register is a R/W register with only five of its bits implemented <4:0>, all other bits read as '0'.

FIGURE 1: LOADING OF PC IN DIFFERENT SITUATIONS

SECTION 1

CALL and GOTO Instructions

When executing a CALL or GOTO, the low 11-bits are loaded directly from the instruction opcode. The high 2-bits are loaded from bits 3 and 4 of the PCLATH register. It is a good practice to pre-load PCLATH with the high byte of the routine's address before executing the routine. This can be done as follows:

EXAMPLE 2:

•		
movlw	HIGH Table	;load high 8-bit
		;address of Table
movwf	PCLATH	;into PCLATH
call	Routine	;execute Call
		;instruction
•		

Note:	If the program memory size is less than		
	2K-words, then the above precaution is		
	not necessary.		

Computed GOTO Instruction

Any instruction with PCL as the destination, will load the PCH with the 5 low bits from the PCLATH (Figure 1). In Example 3, if the address where the CALL was made was on Page 0 and the address of the actual table was on Page 3, then when executing the computed GOTO, the program will go to a location in Page 0 instead of a location on Page 3. To prevent the program from branching to an unintended location when doing a table read, the PCLATH register should be pre-loaded with the high byte of the "Table" address. Example 3A shows how this can be done.

EXAMPLE 3:

org movlw call	0x80 offset Table	;code location in page 0 ;load offset in w reg
•		
ora	0~0320	;Table located in page 3
le:	040520	, tubic focacea in page 5
addwf	PCL,F	;add offset to pc to
		;generate a computed goto
retlw	'A'	;return the ASCII char A
retlw	'B'	;return the ASCII char B
retlw	'C'	;return the ASCII char C
•		
	movlw call org le: addwf retlw retlw retlw	movlw offset call Table org 0x0320 le: addwf PCL,F retlw 'A' retlw 'B' retlw 'C'

EXAMPLE 3A:

	org	0x80
	movlw	HIGH Table
	movwf	PCLATH
	movlw	offset
	call	Table
	org	0x320
Tabl	le:	
	addwf	PCL,F
	retlw	'A'
	retlw	'B'

When doing a computed GOTO for a table read, care should be taken about page boundaries. The ADDWF PCL instruction will not compute a value greater than 8-bits. In Example 4, the result of the computed GOTO will result in a branch to an unintended portion of the code for a value in offset greater than zero. The user either has to be cautious as to where in a page the Table resides or has to monitor page roll-over and add it to the PCLATH ahead of the computed GOTO.

EXAMPLE 4:

	org	0x80	;code location in ; page 0
	movlw	HIGH Table	;load PCLATH with hi ; address
	movwf	PCLATH	; /
	movlw call	offset,F Table	;load offset in w reg
	•		
	•		
	org	0x02ff	;Table located end of
			; page 2
Tab	le:		
	addwf	PCL,F	;value in pc will not
			; roll over to page 3
	retlw	'A'	;return the ASCII
			; char A
	retlw	'B'	;return the ASCII
			; char B
	retlw	'C'	;return the ASCII
			; char C

To take care of both table location and page boundary crossing, it is necessary to do a 13-bit computed GOTO operation as shown in Example 5.

The code in Example 5 will allow the user to place and access a table anywhere in program memory.

EXAMPLE 5:

	•		
	org	0x80	
	movlw	LOW Table	;get low 8 bits of ; address
	addwf	offset,F	;do an 8-bit add
			; operation
	movlw	HIGH Table	;get high 5 bits of ; address
	btfsc	status,c	;page crossed?
	addlw	1	;yes then increment ; high address
	movwf	PCLATH	;load high address in ; latch
	movf	offset,w	;load computed offset ; in w req
	call	Table	,09
	•		
	orq	0x9FD	
Tab	5	ORDID	
	movwf	PCL,F	;load computed offset ; in PCL
	retlw	'A'	; return the ASCII ; char A
	retlw	'B'	; char A ; return the ASCII ; char B
	retlw	'C'	; char b ;return the ASCII ; char C
	•		
	•		

SECTION 2

Implementation for the PIC16C5X Family

The PIC16C5X has no PCH or PCLATH register, so the user has to take into consideration all the precautions mentioned in Section 1. In the PIC16C5X, the location of the Table has to be in the top half of a 512 word page. This restriction is not valid for the PIC16CXXX family. To convert a table read operation from PIC16C5X code to the PIC16CXXX code, the following should be done:

- Remove any program memory page select instructions (PIC16C56/57), if present.
- Do a 13-bit computed GOTO operation (as shown in Example 5), when doing a table read operation.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 2 LAN Drive, Suite 120 Westford, MA 01886 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

China - Beijing Microchip Technology, Beijing

Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing, 100027, P.R.C. Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Unit B701, Far East International Plaza, No. 317, Xianxia Road Shanghai, 200051, P.R.C. Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 India

Microchip Technology Inc. India Liaison Office Divyasree Chambers I Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 027, India Tel: 91-80-207-2165 Fax: 91-80-207-2171

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 **Korea** Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207

Tung Hua North Road

Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle

Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

8/01/00

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL 0Q® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 8/00 🦃 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.