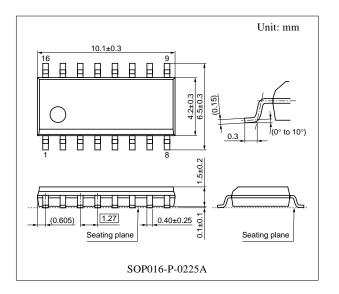
Panasonic

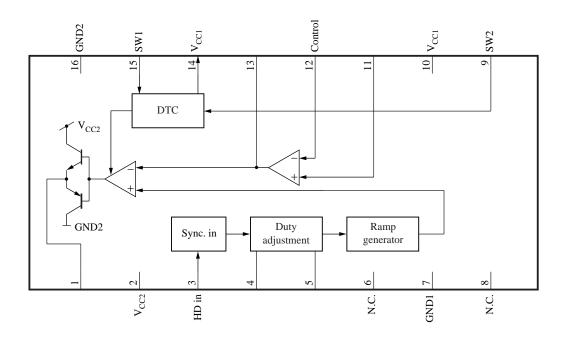
AN5757S

CRT horizontal deflection voltage control IC

Overview


The AN5757S is an IC for PWM-system CRT horizontal deflection voltage control. It can be used for horizontal frequency from 20 kHz to 140 kHz and applicable from a popular type monitor to high precision monitor. Its SO-16-pin package enables the users to desigh the sets simple and efficient.

■ Features


- PWM output
- Built-in thermal protection circuit (cut off both upper and lower push-pull output transistor)
- Soft start function
- Built-in error amp.

Applications

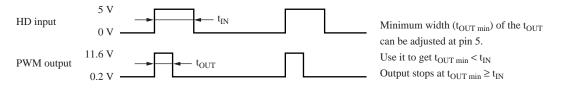
• CRT monitors

■ Block Diagram

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	PWM output	9	On/off SW input2 (SW2)
2	Power supply for output (V _{CC2})	10	Power supply (V _{CC1})
3	Horizontal synchronous input (HD in)	11	IN+
4	Duty adjustment (capacitor)	12	IN-
5	Duty adjustment (resistor)	13	NF
6	N.C.	14	Capacitor for DTC
7	GND1	15	On/off SW input1 (SW1)
8	N.C.	16	GND2

■ Absolute Maximum Ratings


Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC1}	13.2	V
	V _{CC2}	13.2	
Supply current	I _{CC1}	6.3	mA
	I_{CC2}	15.0	
Output current	I_1	±150	mA
Power dissipation *2	P_{D}	198	mW
Operating ambient temperature *1	$T_{ m opr}$	-20 to +70	°C
Storage temperature *1	T_{stg}	-55 to +125	°C

Note) *1: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25$ °C. *2: The power dissipation shown is for the IC package in free air at $T_a = 70$ °C.

[■] Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC1} , V_{CC2}	11.0 to 13.0	V
HD input	V_3	0 to V ₁₀	V
SW1 input	V _{I15}	0 to V ₁₀	V
SW2 input	V_{I9}	0 to V ₁₀	V
Max. duty adjustment voltage	V_5	0 to 6	V
Error amp. positive input	V ₁₁	0 to 6	V
Error amp. negative input	V ₁₂	0 to 6	V
Max. output current of PWM output	I _{1(max)}	-150 to +150	mA

Note) '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

Panasonic

2

ICs for TV AN5757S

\blacksquare Electrical Characteristics at $T_a=25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power supply current	I _{CC1}	$V_{CC} = 12 \text{ V}, V_{9, 15} = 5 \text{ V},$ $V_3 = 5 \text{ V}, V_{11} = 0 \text{ V}$	2.0	4.0	6.0	mA
Power supply current for output	I_{CC2}	$V_{CC} = 12 \text{ V}, V_{9, 15} = 5 \text{ V},$ $V_3 = 5 \text{ V}, V_{11} = 0 \text{ V}$	6.0	10.0	14.0	mA
Duty						
Pin voltage of duty adjustment resistor pin	V ₅₋₇	$V_{CC} = 12 \text{ V},$ $V_3 = 0 \text{ V}$	2.0	3.0	4.0	V
Pin current (for discharge) of duty adjustment capacitor pin	1 _{4D}	$V_{CC} = 12 \text{ V},$ $V_3 = 0 \text{ V}, V_4 = 1 \text{ V}$	3.0	_	_	mA
Pin current (for charge) of duty adjustment capacitor pin	1 _{4C}	$V_{CC} = 12 \text{ V},$ $V_3 = 5 \text{ V}, V_4 = 1 \text{ V}$	-60	-45	-30	μΑ
High-level of duty adjustment capacitor pin	V _{4-7H}	$V_{CC} = 12 \text{ V},$ $V_3 = 5 \text{ V}$	3.2	3.7	4.2	V
Low-level of duty adjustment capacitor pin	V _{4-7L}	$V_{CC} = 12 \text{ V},$ $V_3 = 0 \text{ V}$	0	_	0.15	V
DTC				•		
SW2 pin current H	I_{9H}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_9 = 12 \text{ V}$	200	300	400	μΑ
SW2 pin current M	I_{9M}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_9 = 5 \text{ V}$	45	70	95	μΑ
SW2 pin current L	I_{9L}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_9 = 0 \text{ V}$	-5	_	0	μΑ
SW1 pin current H	I _{15H}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_{15} = 12 \text{ V}$	200	300	400	μΑ
SW1 pin current M	I _{15M}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_{15} = 5 \text{ V}$	45	70	95	μΑ
SW1 pin current L	I _{15L}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $V_{15} = 0 \text{ V}$	-5	_	0	μΑ
Pin current (discharge) of DTC capacitor pin	I_{14D}	V _{CC} = 12 V, V ₁₄ = 5 V, V _{9, 15} = 12 V	60	90	120	μΑ
Pin current (charge) of DTC capacitor pin	I _{14C}	$V_{CC} = 12 \text{ V}, V_{14} = 10 \text{ V},$ $V_{9, 15} = 0 \text{ V}$	-15	-8	-1	mA
High-level of DTC capacitor pin	V _{14-7H}	V _{CC} = 12 V, V _{9, 15} = 0 V	11.5	_	_	V
Low-level of DTC capacitor pin	V _{14-7L}	V _{CC} = 12 V, V _{9, 15} = 12 V	0	_	0.15	V

Panasonic 3

\blacksquare Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
PWM output						
High-level of PWM output pin (no load)	V _{1-16H1}	V _{CC} = 12 V, V ₃ = 0 V, pin 1: Open	11.0	_		V
Low-level of PWM output pin (no load)	V _{1-16L1}	V _{CC} = 12 V, V ₃ = 5 V, pin 1: Open	0	_	1.0	V
High-level of PWM output pin (with load)	V _{1-16H2}	$V_{CC} = 12 \text{ V}, V_3 = 0 \text{ V},$ $I_1 = -150 \text{ mA}$	8.0	10.0	11.5	V
Low-level of PWM output pin (with load)	V _{1-16L2}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $I_1 = +150 \text{ mA}$	0.5	1.5	2.5	V

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
HD input frequency	f ₃	$V_{CC} = 12 \text{ V},$ $V_{9, 15} = 12 \text{ V}, V_{11} = 0 \text{ V}$	20	_	140	kHz
HD input threshold value	V _{3TH}	$V_{CC} = 12 \text{ V},$ $V_{9, 15} = 12 \text{ V}, V_{11} = 0 \text{ V}$	0.6	1	1.4	V
Open gain of error amp.	A	$V_{CC} = 12 \text{ V}$	_	80	_	dB
Current capability of PWM output pin	I ₁	$V_{CC} = 12 \text{ V}$	-150	_	+150	mA
Operation start voltage	V _{10-7N}	$V_{11} = 0 \text{ V}, V_3 = 5 \text{ V}$	8.1	8.5	8.9	V
Operation stop voltage	V _{10-7F}	$V_{11} = 0 \text{ V}, V_3 = 5 \text{ V}$	6.1	6.5	6.9	V
SW1 threshold value	V _{S15}	$V_{CC} = 12 \text{ V}, V_{11} = 0 \text{ V},$ $V_3 = 5 \text{ V}$	1.1	1.5	1.9	V
SW2 threshold value	V _{S9}	$V_{CC} = 12 \text{ V}, V_{11} = 0 \text{ V},$ $V_3 = 5 \text{ V}$	1.1	1.5	1.9	V

■ Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Waveform
1	1 V _{CC1} V _{CC2}	PWM output: Pin for output	11 V
2	2 Y _{CC2}	Power supply for output: Power supply for PWM output Apply DC 12 V.	DC 12 V

4 Panasonic

ICs for TV AN5757S

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Waveform
3	V_{CC1} V_{C	Horizontal synchronizing signal input: Input pin of horizontal synchronizing signal Detection level is 1 V.	5 V 1 V 0 V
4	V _{CC1} V _{CC1} 50 μA	For duty adjustment (capacitor): Duty can be adjusted by attaching a capacitor between the pin and GND. If capacitance is raised, duty becomes small.	HD Pin 4
5	V_{CC1} V_{C	Duty adjustment (resistor): Duty can be adjusted by attaching a resistor between the pin and GND. If resistance is lowered, duty becomes large.	DC 0.5 V to 5.0 V variable V _{th}
6	_	N.C.: Pin for N.C.	_
7	7	GND1: Pin for GND	0 V
8	_	N.C.: Pin for N.C.	_
9	V _{CC1} V _{CC1} 50 μA 50 μA 1.5 V	Switch input2 for on/off: On/off switch pin for PWM output On at 2 V or more and off at 0 V. (Threshold level: 1.5 V)	Pin 9 Pin 1 $0 \text{ V} \rightarrow \text{High } (11 \text{ V})$ $2 \text{ V or more} \rightarrow \text{Low } (1 \text{ V})$
10	(I) V _{CC1}	Power supply: Power supply pin Apply DC 12 V.	DC 12 V

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Waveform
11	V _{CC1} V _{CC1} 50 μA	IN+: Input pin for + side input pin for error amp.	_
12	Pin 11, 12	IN-: Input pin for – side input pin for error amp.	
13	(3) V _{CC1} V _{CC2}	NF: Output pin for error amp.	_
14	V_{CC1} $V_{$	Capacitor for DTC: Capacitor pin to determine a soft start time If capacitance is raised, time becomes long.	_
15	V _{CC1} V _{CC1} 50 μA 1.5 V	Switch input1 for on/off: On/off switch pin for PWM output. On at 2 V or more and off at 0 V. (Threshold level: 1.5 V)	Pin 15 Pin 1 $0 \text{ V} \rightarrow \text{High (11 V)}$ $2 \text{ V or more } \rightarrow \text{Low (1 V)}$
16	16	GND2 Pin for GND.	0 V

6

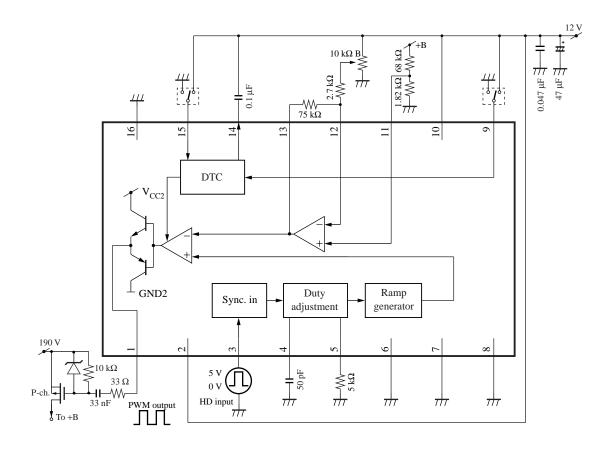
ICs for TV AN5757S

■ Usage Notes

• Allowable mode of short-circuit between pins

Short circuit allowable pins are marked with ● symbol.

It has been confirmed that a typical IC sample does not break down even if pins are short-circuitted for one second.


It has been confirmed that a typical IC sample does not emitting smoke and fire even if pins are short-circuitted for ten seconds. This is not inspected for all ICs.

The mark \times shows that a breakdown may be caused if the pins are short-circuitted. Full care must be taken on using the IC.

1																
2	•															
3	•	•														
4	•	•	•													
5	•	•	•	•												
6	•	•	•	•	•		_									
7	•	×	•	•	•	•		_								
8	•	•	•	•	•	•	•									
9	•	•	•	•	•	•	•	•		_						
10	•	•	•	•	•	•	×	•	•							
11	•	•	•	•	•	•	•	•	•	•						
12	•	•	•	•	•	•	•	•	•	•	•		_			
13	•	•	•	•	•	•	•	•	•	•	•	•		_		
14	•	•	•	•	•	•	•	•	•	•	•	•	•		_	
15	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
16	•	×	•	•	•	•	•	•	•	×	•	•	•	•	•	
Pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1

Panasonic 7

■ Application Circuit Example

Note) When both of the pin 4 and the pin 5 are open, minimum pulse width of PWM output is 2.0 $\mu s.$