AN5767K

Synchronizing signal processing IC

■ Overview

The AN5767K is a synchronizing signal processing IC with built-in frequency divider circuit for horizontal and vertical synchronizing signal. Input signal is outputted after being devided by two.

Features

- Built-in dividing-by-two circuit for horizontal synchronizing signal
- Built-in dividing-by-two circuit for vertical synchronizing signal
- On/off switch function of dividing output
- Gain control function of dividing output

Applications

- CRT monitors

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Power supply 12 $\mathrm{V}\left(\mathrm{V}_{\mathrm{CC}}\right)$	8	H-sync. input
2	Freq.-divided output1 output	9	Freq.-divided output1 on/off
3	Freq.-divided output2 on/off	10	Freq.-divided output2 control resistor
4	Freq.-divided output2 control input	11	Freq.-divided output2 output
5	Freq.-divided output1 control input	12	GND2
6	V-sync. input	13	Freq.-divided output1 control resistor
7	GND1		

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	13.5	V
Supply current	I_{CC}	25	mA
Power dissipation $^{* 2}$	P_{D}	337.5	mW
Operating ambient temperature $^{* 1}$	$\mathrm{~T}_{\mathrm{opr}}$	-25 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Note) $* 1$: Except for the operating ambient temperature, and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
$* 2$: The power dissipation shown is for the IC package in free air at $\mathrm{T}_{\mathrm{a}}=75^{\circ} \mathrm{C}$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC}	10.8 to 13.2	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Circuit current	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$	4.8	5.9	7.2	mA
Circuit voltage 1	$\mathrm{V}_{10(1)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{4}=0 \mathrm{~V}$	-0.1	0.0	+0.1	V
Circuit voltage 2	$\mathrm{V}_{10(2)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{4}=5 \mathrm{~V}$	4.60	4.85	5.10	V
Circuit voltage 3	$\mathrm{V}_{13(1)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{5}=0 \mathrm{~V}$	-0.1	0.0	+0.1	V
Circuit voltage 4	$\mathrm{V}_{13(2)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}$	4.60	4.85	5.10	V
Freq.-divided output2 output current 1	$\mathrm{I}_{11(1)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{3}=5 \mathrm{~V}$, $\mathrm{V}_{4}=5 \mathrm{~V}, \mathrm{R}=120 \mathrm{k} \Omega$	30	40	50	$\mu \mathrm{~A}$
Freq.-divided output2 output current 2	$\mathrm{I}_{11(2)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{3}=0 \mathrm{~V}, \mathrm{~V}_{4}=5 \mathrm{~V}$	-5	0	+5	$\mu \mathrm{~A}$
Freq.-divided output2 output current 3	$\mathrm{I}_{11(3)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{3}=5 \mathrm{~V}, \mathrm{~V}_{4}=0 \mathrm{~V}$	-5	0	+5	$\mu \mathrm{~A}$
Freq.-divided output1 output current 1	$\mathrm{I}_{2(1)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}$,	-3.0	-2.5	-2.0	mA
Freq.-divided output1 output current 2	$\mathrm{I}_{2(2)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{9}=0 \mathrm{~V}$	-0.05	0	+0.05	mA
Freq.-divided output1 output current 3	$\mathrm{I}_{2(3)}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{9}=5 \mathrm{~V}$	-0.05	0	+0.05	mA

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
V-sync. dividing operation	$\mathrm{f}_{\mathrm{V} 2}$	Pin 2 output frequency at pulse input to pin 6	-	$\mathrm{f}_{\mathrm{V} 2}=$ $1 / 2 \mathrm{f}_{\mathrm{V} 6}$	-	Hz
H-sync. dividing operation	$\mathrm{f}_{\mathrm{H} 11}$	Pin 11 output frequency at pulse input to pin 8	-	$\mathrm{f}_{\mathrm{H} 11}=$ $1 / 2 \mathrm{f}_{\mathrm{H} 8}$	-	Hz
H-sync. dividing operation polarity between field	$\mathrm{f}_{\mathrm{H} 11 \mathrm{P}}$	Pin 11 output frequency at pulse input to pin 6	-	$\mathrm{f}_{\mathrm{H} 11}=$ $1 / 2 \mathrm{f}_{\mathrm{V} 6}$	-	Hz
V-sync. input	V_{VS}	Threshold value	-	2.5	-	V
H-sync. input	V_{HS}	Threshold value	-	2.5	-	V
V-sync. input	$\mathrm{f}_{\mathrm{VIN}}$	Operating frequency	30	-	200	Hz
H-sync. input	$\mathrm{f}_{\mathrm{HIN}}$	Operating frequency	15	-	150	kHz

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	DC voltage (V)
1	$(1) \mathrm{V}_{\mathrm{CC}}$	Power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$: Supply pin Apply DC 12 V .	12
2		Freq.-divided output1: Freq-divided output of V-sync. Outputted with current	
3		Freq.-divided output2 on/off: On/off changeover pin for freq.-divided output2 Off at 0 V .	\square
4		Freq.-divided output2 control input: Control input pin for freq.-divided output2 Apply DC 0 V to 5 V .	0 to 5

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
5		Freq.-divided output 1 control input: Control input pin for freq.-divided output 1 Apply DC 0 V to 5 V .	0 to 5
6		V-sync. input: Input pin for V-sync. Input negative polarity pulse.	\square_{0}^{5}
7	$\pi \overbrace{}^{(7)-}{ }_{\text {To (12) }}{ }^{\pi}$	GND1: Ground pin	0
8		H-sync. input: Input pin for H -sync. Possible to input with both polarities, but phase will be delayed by a pulse width if pulse is inputted with positive polarity.	\square_{0}^{5}
9		Freq.-divided output1 on/off: On/off changeover pin for freq.-divided output1. Off at 0 V .	$\square \square L$
10		Control resistor for freq.-divided output2: Resistor pin to determine freq.-divided output2 output current. Connect the resistor (recommended 120 $\mathrm{k} \Omega$) from this pin to GND.	0 to 5

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
11	(11)	Freq.-divided output2: Freq.-divided output of H -sync.. Outputted with current.	$\square \square \square$
12	$\pi \overbrace{T}^{(12)-} \overbrace{\mathrm{To}(7)}^{\pi}$	GND2: Ground pin	0
13		Freq.-divided output1 control input: Resistor pin to determine freq.-divided output1 output current. Connect the resistor (recommended 20 $\mathrm{k} \Omega$) between this pin and GND.	0 to 5

Usage Notes

ECL is used for flip-flop circuit.
Use the condition of $\mathrm{t}_{\mathrm{r}} \leq 10 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{f}} \leq 10 \mu \mathrm{~s}$ for H -sync. and V -sync. respectively.

Application Circuit Example

1. Recommended application conditions

Parameter	Symbol	Range	Unit
Freq.-divided output2 control input	V_{4-7}	0 to 6	V
Freq.-divided output1 control input	V_{5-7}	0 to 6	V
H-sync. input	V_{8-7}	0 to 6	V
V-sync. input	V_{6-7}	0 to 6	V
Freq.-divided output2 output current	I_{11}	0 to 1	mA
Freq.-divided output1 output current	I_{2}	-10 to 0	mA
Recommended resistance	R 10	20 k to 200 k	Ω
Recommended resistance	R 13	10 k to 200 k	Ω

2. Freq.-divided output2 on/off

3. Freq.-divided output1 on/off

$$
\begin{array}{ll}
\text { At } \mathrm{V}_{9}=0 \mathrm{~V} & \leftarrow 0 \mathrm{~V} \\
\text { At } \mathrm{V}_{9}=\text { open } & \text { Pin } 2 \text { output } \\
\boxed{-\cdots}: \square 0 \mathrm{~V} & \text { Pin } 2 \text { output }
\end{array}
$$

