

CMY 210 - 1960 MHz to 110 MHz Down-Converter

Application Note No. 037

The CMY 210 is a ultralinear mixer with integrated LO-buffer for frequencies up to and exceeding 2.5 GHz. A low LO-input power of typically 0 dBm is sufficient to provide a very high input intercept point of typically + 25 dBm at 3 V.

The input and output ports are 50 Ω matched. The device can be used as up- and down-converter.

Application Circuit

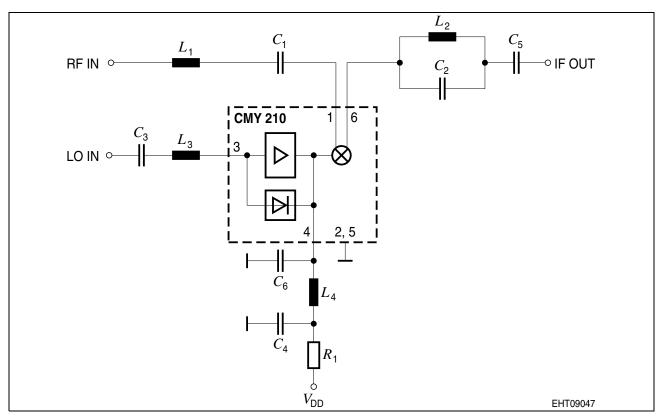


Figure 1 Application Circuit

Table 1 List of Components

$\overline{L_1}$	3.3 nH Coilcraft 0805	C ₃	12 pF 0805
$\overline{L_2}$	3.3 nH Coilcraft 0805	C_4	12 pF 0805 parallel to 0.47 μF
$\overline{L_3}$	2.2 - 2.7 nH or printed coil (tune for minimum power consumption)	C_5	150 pF 0805
$\overline{L_4}$	3.3 nH Coilcraft 0805 (tune for minimum power consumption)	C_6	Not required in this application
$\overline{C_1}$	1.8 pF 0805	R_1	Not required in this application
C_2	1.2 pF 0805		

Setup

- 1. In order to optimize power consumption, L_4 can be modified for minimum drain current: Switch on local oscillator at required LO-frequency and check the drain current. Adjust the LO-frequency to find the minimum current. If the minimum is detected at a lower frequency than the required LO-frequency, choose a lower value inductor for L_4 ; if detected at a higher frequency, choose a higher value.
- 2. Matching of IF- and RF-filters

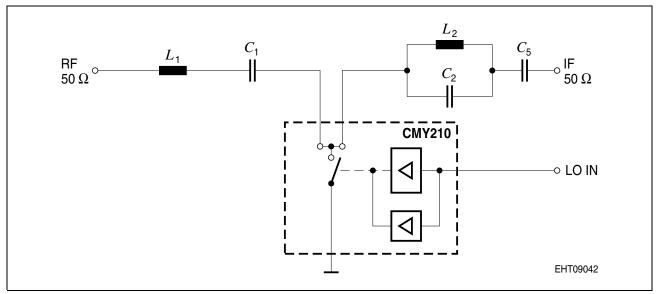


Figure 2 CMY 210 External Matching Circuit

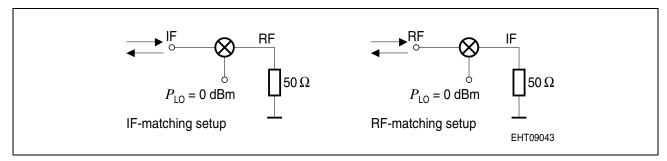
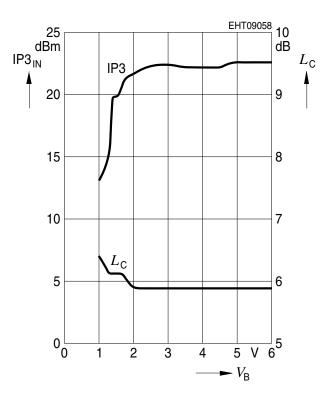


Figure 3 IF-Matching Setup and RF-Matching Setup

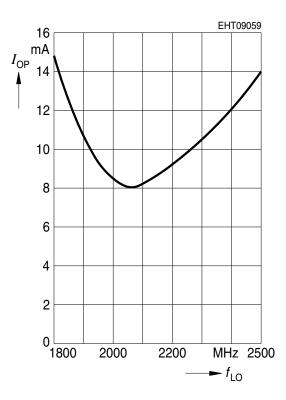
Usually both resonance filters $(L_1, C_1 \text{ and } L_2, C_2)$ are tuned to the RF-frequency. Filter L_1 , C_1 passes the RF-frequency and reflects the IF-signal. Filter L_2 , C_2 suppresses the RF-band and passes IF. An appropriate adjustment of the filters is the prerequisite to achieve a lower conversion loss. According to Figure 2 the resonance frequency of the IF-filter L_2 , C_2 $(f_{\text{res}} = 1/(2\pi\sqrt{L_2 \times C_2}))$ can be adjusted to maximum reflection at f_{RF} by choosing appropriate inductors and capacitors. Correspondingly, the L_1 , C_1 resonance frequency of RF-filter can be matched with minor modification of these values according to Figure 2. Since the IF- and RF-filters are connected with the ohmic resistor of the switching FET, matching of either filter might influence the matching parameters of the other filter.


Application Note 2 2001-01-01

- 3. At higher LO-frequencies (> 2 GHz) the gain of the LO buffer amplifier is already decreasing, causing a slightly lower IP_{3IN} and higher operating current.
- 4. The IP_{3IN} remains very constant with changes in operating voltage. A supply voltage of less than 2 V however will decrease the intermodulation performance. Please refer to the following figure. The conversion losses $L_{\mathbb{C}}$ are independent of the operating voltage as long as the switch transistor is not pinched off. The losses are mainly determined by the quality of IF- and RF-filters as mentioned in 2.

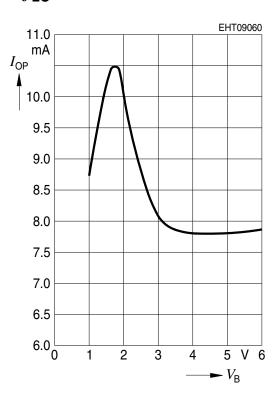
IP_{3IN}, L_{C} vs. Operation Voltage

 $f_{\rm RF}$ = 1960 MHz, $P_{\rm RF}$ = 2x-3 dBm, $f_{\rm LO}$ = 2070 MHz, $P_{\rm LO}$ = 0 dBm



5. The figure below shows the operating current over LO-frequency. A current minimum at approximately 2070 MHz has been obtained by tuning the circuit for this LO-frequency as described in 2.

Operating Current vs. LO-Frequency


$$V_{\mathrm{D}}$$
 = 3 V, P_{LO} = 0 dBm

6. The operation current over the operating voltage at a fixed $f_{\rm LO}$ = 2070 MHz is shown in the following figure.

Operation Current vs. Operation Voltage at $f_{\rm LO}$ = 2070 MHz

Layout of 1960 MHz to 110 MHz Down-Converter

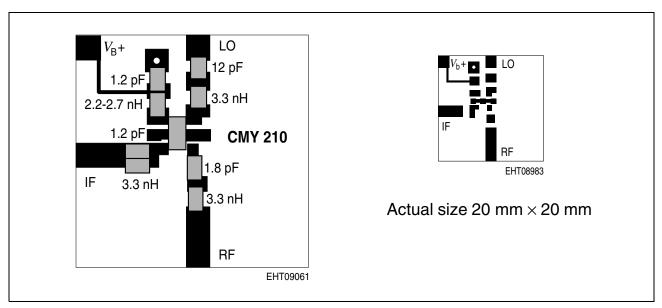


Figure 4 Layout of Application Board

PCB - data: Glass fiber epoxy board (double sided), ε_r = 4.8, thickness = 1.0 mm

Keydata of 1960 MHz to 110 MHz Down-Converter

(Test conditions: $V_{\rm D}$ = 3.0 V; $f_{\rm RF}$ = 1960 MHz \pm 0.5 MHz; $P_{\rm RF}$ = 2 x - 3 dBm; $f_{\rm LO}$ = 2070 MHz; $P_{\rm LO}$ = 0 dBm; $f_{\rm IF}$ = 110 MHz; $T_{\rm A}$ = 25 °C)

Parameter	Symbol	Value	Unit
Operating current	I_{OP}	8.1	mA
Conversion Loss	L_{C}	5.9	dB
3 rd Order Input Intercept Point	IP _{3IN}	+ 22.6	dBm
RF- /IF-Input Return Loss	IRL	> 12	dB

2nd order intermodulation

(Test conditions: f_{RF} = 1960 MHz; P_{RF} = -3 dBm; f_{LO} = 2070 MHz; P_{LO} = 0 dBm)