CMOS 4-bit 1 Chip Microcomputer

Description

CXP5056/CXP5058 is a CMOS 4-bit microcomputer which consists of 4-bit CPU, ROM, RAM, 1/O port, 8 -bit timer, 8 -bit timer/counter, 18 -bit time base timer, 8 -bit serial $1 / 0$, vector interruption, power on reset function, fluorescent display tube controller/driver, D/A conversion PWM output port, a remote control reception circuit, 3 -bit A/D converters, a 32 kHz timer/event counter and a power supply current detection reset function. They are integrated into a single chip with the standby function, etc. which are to be operated at a low power consumption.

Features

Package Outline Unit: mm

- RO
$8,192 \times 8$ bits (CXP5058)
$6,144 \times 8$ bits (CXP5056)
- RAM capacity 384×4 bits (Including stack and display area)
- 43 general purpose 1/O ports
- Fluorescent display tube controller/driver
(Ables to display maximum 256 segments)
- 1 to 16 digits dynamic scan display
- Page mode/variable mode
- Dimmer function
- High tension proof output (40V)
- Selection possible for incorporating pull-down resistance (mask option)
- 14-bit PWM output for D/A conversion
- Remote control receiving circuit
- 3-bit A/D converter (8 channels per circuit)
- 32 kHz timer/event counter
- 8 -bit/4-bit variable serial 1/0
- 8-bit timer, 8 -bit timer/event counter and 18 -bit time base timer, independently controlled
- Arithmetic and logical operations possible between the entire RAM area, I/O area and the
accumulator by means of memory mapped $1 / 0$
- Reference to the entire ROM area is possible with the table look-up instruction
- 2 kinds of power down modes of sleep and stop
- Power on reset circuit (mask option)
- Provided with 80 pin plastic OFP
- Provided with 80 pin piggyback OFP (CXP5050)

Structure

Silicon gate CMOS IC

Block Diagram

Pin Configuration Diagram (Top View)
Note) Do not make any connections to NC pins.

Absolute Maximum Ratings	$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} . \mathrm{V}_{\text {ss }}=0 \mathrm{~V}$			
Item	Symbol	Rating	Unit	Remarks
Power supply voltage	$V_{D D}$	-0.3 to +7.0	V	
Input voltage	VIN	-0.3 to $+7.0{ }^{\text {. }}$	V	
Output voltage	Vout	-0.3 to $+7.0 * 1$	V	
Display output voltage	Vod	$\begin{gathered} V_{D D}-40 \text { to } \\ V_{D D}+0.3 \end{gathered}$	V	As P channel transistor is open drain, VDD voltage is determined as standard.
High level output current	IOH	-5	mA	Other than display output pins** ${ }^{*}$ per pin
	lodh 1	- 15	mA	Display output SO to S 15 : per pin
	lODH2	-35	mA	Display output T0 to T7, T8/ S23 to T15/S16: per pin
High level total output current	$\Sigma \mathrm{loH}$	-40	mA	Total of other than display output pins
	$\Sigma \mathrm{lodh}$	-100	mA	Total of display output pins
Low level output current	loL	15	mA	Port 1 pin
	lolc	20	mA	High current port pin*3
Low level total output current	Σ loL	100	mA	Entire pin total
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Po	600	mW	QFP

Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should better take place under the recommended operation conditions. Exceeding those conditions may adversely affect the reliability of the LSI.
*1) VIN and Vout should not exceed Vod $+0.3 V$.
*2) Specifies the output current of the general purpose $1 / O$ port PA to PF, PI, SO, $\overline{S C}, P Y O$ and PY1.
*3) The high current operation transistors are the $\mathrm{N}-\mathrm{CH}$ transistors of the PC and PD ports.

Recommended Operating Condition $V_{\text {Ss }}=0 \mathrm{~V}$					
Item	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	VDo	4.5	5.5	V	Guaranteed range during operation
		2.5	5.5	\checkmark	Guaranteed data hold operation range during STOP
High level input voltage	V_{IH}	$0.7 V_{D D}$	$V_{D O}$	V	
	$\mathrm{V}_{\text {IHS }}$	$0.8 \mathrm{~V} D \mathrm{D}$	$V_{D D}$	V	Hysteresis input*'
	$V_{\text {IHEX }}$	VDD-0.4	$V_{D D}+0.3$	V	EXTAL $\mathrm{pin}^{* 2}$
Low level input voltage	$\mathrm{V}_{\text {IL }}$	0	0.3 Vad	V	
	VILS	0	0.2 V Do	V	Hysteresis input*
	VILEX	-0.3	0.4	\checkmark	EXTAL pin* ${ }^{\text {2 }}$
Operating temperature	Topr	-20	$+75$	${ }^{\circ} \mathrm{C}$	

* 1) The TEX pin when the counter mode is selected by each of INT, PX0, PX2, PY2, PY3, $\overline{\mathrm{RST}}$ pins and mask option.
*2) Specified only during external clock input.

$$
-4-
$$

Electrical Characteristics

DC characteristics $\quad \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}, \mathrm{V}_{\text {ss }}=0 \mathrm{~V}$							
Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PF, PI PXO, PX1 PYO, PY1 RST (Vol only)	$V_{D D}=4.5 \mathrm{~V}, \mathrm{lOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{loH}=-1.0 \mathrm{~mA}$	3.5			\checkmark
Low level output voltage	Vol		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{V}_{\mathrm{OD}}=4.5 \mathrm{~V}, 1 \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PC, PD	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{lOL}=12 \mathrm{~mA}$			1.5	\checkmark
Input current	l/he	EXTAL	$\mathrm{V}_{\text {DO }}=5.5 \mathrm{~V}, \mathrm{~V}_{1 H}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	HLe		$\mathrm{V}_{\text {OD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	Ihti	TEX*3	$V_{O D}=5.5 \mathrm{~V}, \mathrm{~V}_{1 H}=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	luti		$V_{O D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	仿T *2		-1.5		-400	$\mu \mathrm{A}$
High impedance I/O leakage current	$1 / 2$	PA to PF, PI PXO to PX2, PY2, PY3, INT, RST *2, TEX* ${ }^{*}$	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V} \\ & V_{1}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Display output current	lon	S0 to S15	$\begin{aligned} & V_{D D}=4.5 \mathrm{~V} \\ & V_{O H}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$	-7			mA
		S16/T15 to S23 /T8, T0 to T7		-18			mA
Open drain output leakage current ($\mathrm{P}-\mathrm{CH}$ Tr OFF in state)	ILOL	So to S15, S16/ T15 to S23/T8, T0 to T7	$\begin{aligned} & V_{D D}=5.5 V \\ & V_{O L}=V_{D D}-35 V \end{aligned}$			- 20	$\mu \mathrm{A}$.
Pull-down resistance* ${ }^{1}$	R_{L}	So to S15, S16/ T15 to S23/T8, T0 to T7	$\begin{aligned} & V_{D D}=5 V \\ & V_{F D P}=V_{D D}-35 V \end{aligned}$	60	100	270	$k \Omega$
Supply current	100	Vod	Crystal oscillation ($\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$) of $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, 4.19 \mathrm{MHz}$ entire output pins open		$\begin{gathered} 5 \\ (7)^{*} \end{gathered}$	$\binom{15}{(20)}$	mA
	IDDSP		SLEEP mode		$\begin{gathered} 3 \\ (5)^{* 4} \end{gathered}$	$\begin{gathered} 9 \\ (12) * * \end{gathered}$	mA
			$\begin{aligned} & \text { STOP mode } \\ & \begin{array}{\|l\|l\|} \hline D O & =3 \mathrm{~V}, 32 \mathrm{kHz} \text { with } \mathrm{T} / \mathrm{C} \end{array} \end{aligned}$		30	200	$\mu \mathrm{A}$
	loos		$\begin{array}{\|l} \hline V_{D D}=5.5 \mathrm{~V}, 32 \mathrm{kHz} \\ \text { without } \mathrm{T} / \mathrm{C} \text { (For mask } \\ \text { option select counter. } \\ \text { Pin is fixed.) } \end{array}$			10	$\mu \mathrm{A}$
Input capacity	CIN	PA to $\mathrm{PF}, \mathrm{PI}, \mathrm{PX}$, PY2, PY3, EXTAL, TEX, INT, $\overline{R S T}$	Clock 1 MHz OV other than the measured pins		10	20	pF

* 1) In case the incorporated pull-down resistance has been selected with mask option.
*2) $\overline{\mathrm{RST}}$ pin specifies the input current when the pull-up resistance is selected, and specifies leakage current when nonresistance is selected.
* 3) The TEX pin specifies the input current when the 32 kHz oscillation is selected by the mask option, and specifies the leak current when the counter mode is specified.
* 4) Specifies the power supply current of the high speed version.

AC Characteristics
(1) Clock timing

Item	Symbol	Pin	Condition	Min.	Max.	Unit
System clock frequency	$f \mathrm{c}$	XTAL EXTAL	Fig. 1, Fig. 2	1	5	MHz
System clock input pulse width	$\begin{aligned} & \mathrm{t} \times \mathrm{L} \\ & \mathrm{txH} \end{aligned}$	EXTAL	Fig. 1, Fig. 2 (External clock drive)	90		ns
System clock input rising and falling times	$\begin{aligned} & \text { tCR } \\ & \text { tcF } \end{aligned}$				200	ns
Event count clock input pulse width	$\begin{aligned} & \text { tEL } \\ & \text { tEM } \end{aligned}$	$\overline{\mathrm{EC}}$	Fig. 3	$\begin{array}{c\|} \hline \text { tsys*' } \\ +0.05 \end{array}$		$\mu \mathrm{s}$
Event count clock input rising and falling times	$\begin{aligned} & \text { ter } \\ & \text { teF } \\ & \hline \end{aligned}$	$\overline{E C}$	Fig. 3		20	ms
Event count input clock input pulse width	$\begin{aligned} & \mathrm{t} T \mathrm{~L} \\ & \mathrm{t} T \mathrm{H} \\ & \hline \end{aligned}$	TEX*2	Fig. 3	10		$\mu \mathrm{s}$
Event count input clock rising and falling times	$\begin{aligned} & \text { tTR } \\ & \text { tTF } \end{aligned}$	TEX* ${ }^{2}$	Fig. 3		20	ms

*) tsys in the standard version is tsys $=16 / \mathrm{fc}$
tsys in the high speed version is tsys $=8 / \mathrm{fc}$
*2) Specified when the counter mode is selected by the mask option.
Note) When adjusting the frequency accurately, there may be cases in which they may differ from Fig. 2.

Fig. 1 Clock timing

Fig. 2 Clock applying condition

Fig. 3 Event count clock timing
(2) Serial transfer $\quad T a=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}_{D D}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
Serial transfer clock ($\overline{\mathrm{SC}}$) cycle time	${ }_{\text {tKCY }}$	$\overline{\mathrm{SC}}$	Input mode	tsys/4+1.42		$\mu \mathrm{s}$
			Output mode	2tsys		$\mu \mathrm{s}$
Serial transfer clock ($\overline{\mathrm{SC}}$) high and Iow level widths	$\begin{aligned} & \text { tKH } \\ & \text { tKL } \end{aligned}$	S"C	Input mode	tsys $/ 8+0.7$		$\mu \mathrm{s}$
			Output mode	tsys - 0.1		$\mu \mathrm{s}$
Serial data input setup time (against $\overline{\mathrm{SC}} \uparrow$)	tsIK	SI	$\overline{\mathrm{SC}}$ input mode	0.1		$\mu \mathrm{s}$
			$\overline{\mathrm{SC}}$ output mode	0.2		$\mu \mathrm{s}$
Serial data input hold time (against $\overline{\mathrm{SC}} \uparrow$)	tksı	SI	$\overline{\mathrm{SC}}$ input mode	tsys/8+0.5		$\mu \mathrm{s}$
			$\overline{\text { SC }}$ output mode	0.1		$\mu \mathrm{s}$
Data delay time from $\overline{\overline{\mathrm{SC}}}$ falling	tkSO	SO			tsys $/ 8+0.5$	$\mu \mathrm{s}$

Note 1) tsys in the standard version is tsys $=16 / \mathrm{fc}$
tsys in the high speed version is tsys $=8 / \mathrm{fc}$
2) The Load of data output delay is $50 \mathrm{pF}+1 \mathrm{TTL}$

Fig. 4 Serial transfer timing

(3) A / D converter	$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\text {Ss }}=0 \mathrm{~V}$		
Analog input voltage	Pin	Condition	Digital conversion value
0.0 to 0.33 V	$\begin{gathered} \text { AD0 } \\ \text { to } \\ \text { AD7 } \end{gathered}$	$V_{\text {DO }}=5 \mathrm{~V}$	000
0.82 to 1.29 V			001
1.78 to 2.21 V			010
2.69 to 3.06 V			011
3.56 to 4.06 V			100
4.62 to 5.0 V			101

Note) The digital conversion value are the values when $B 5 H$ address of the RAM file 1 in the program are read.
(4) Power Supply Voltage Detection Reset Function
$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=\mathrm{OV}$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Power supply voltage detection reset function of operation voltage range	$V_{L P O P}$	$V_{D D}$	Voltage range allowing system operation	2.5		5.5	V
Power supply voltage drop detection function	$V_{\text {POP }}$	$V_{D D}$	When VREF pin voltage is 3.3 V Flag set when voltage drops System reset when voltage rises	3.8	4.0	4.2	V

The graph in Fig. 5 shows the relationship between the power supply voltage V_{00} and reference voltage VREF of the power supply voltage detection reset function.

Note 1) The graph in Fig. 5 serves as guide to the function operation area obtained using average devices.
Individual adjustment is needed when Zener diodes, etc., are connected to the Vhef pin.
2) At the rising edge of the power supply, the reset function is activated below 4.5 V .
As there is no oscillation stabilization time for resets by the power supply voltage reset function, it is necessary that the voltage of the power supply rises to above 4.5 V immediately (approx. $30 \mu \mathrm{~s}$). Ample consideration is required for the oscillation stabilization time as it varies according to the oscillation element.
(In general, time required for stabilization from the beginning of oscillation is shorter for ceramic oscillators than for crystal oscillators.)

Fig. 5 Power supply voltage detection reset function chart
(5) Others
$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DO}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption high and low level widths	tı1H, tılL	INT	During edge detection mode	tsys +0.05		$\mu \mathrm{~s}$
Reset input low level width	tRSL	RST		2 nsys		$\mu \mathrm{s}$
Wake-up input high level width	twPH	WP	STOP mode	500		ns
			tsys +0.05		$\mu \mathrm{~s}$	

Note) tsys in the standard version is tsys $=16 / \mathrm{fc}$ tsys in the high speed version is tsys $=8 / \mathrm{fc}$

Fig. 6 Interruption input timing

Fig. 7 Reset input timing

WP

Fig. 8 Wake-up input timing

Item	Symbol	Pin	Condition	Min.	Max.	Unit
Power supply rising time	tr	VDD	Power on reset	0.05	50	ms
Power supply cut-off time	toff		Repetitive power on reset	1		ms

* Specifies only when power on reset function is selected.

VDD

The power supply should rise smoothly.
Fig. 9 Power on reset

Notes on Application

See Fig. 10, Additive capacity calculation chart, when using the crystal oscillator and select the appropriate capacity.

Fig. 10 Crystal oscillation circuit additive capacity calculation chart
Note) The above chart shows a range in which the average quartz resonator has a relatively fast oscillation rising edge and stable characteristics. The capacity should be selected to correspond to the appropriate constant for each quartz resonator, should the frequency of the quartz resonator be accurately adjusted.

Fig. 11 shows recommended circuits and oscillators.
Use the trimmer capacitor to Cl , in the case of accurate adjustment of the oscillation frequency.

1. Main clock

Ceramic resonator

Manufacturer	Model	Frequency range (MHz)	$\mathrm{C} 1(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	$\mathrm{Rd}(\Omega)$
MURATA MFG CO., LTD.	CSA4.19MG040	4.19	100	100	-
	CSA4.19MGW040		built in	built in	-

Crystal oscillator

Manufacturer	Model	Frequency range (MHz)	C1 (pF)	$\mathrm{C} 2(\mathrm{pF})$	$\operatorname{Rd}(\Omega)$
CITIZEN WATCH CO., LTD.	CSA309	4.19	10 (20 trimmer)	10	-
NIHON DEMPA KOGYOCO., LTD.	AT-51		$\begin{array}{\|c\|} \hline 15(20 \\ \text { trimmer) } \end{array}$	15	6.8k
KINSEKI LTD.	HC-49/U-S		$\begin{array}{\|r\|} \hline 22(20 \\ \text { trimmer }) \\ \hline \end{array}$	22	3.3k

2. 32 kHz Timer/Counter

	Manufacturer	Model	Frequency range (kHz)	C1 (pF)	C2(pF)	$\operatorname{Rd}(\Omega)$
TEX TX	CITIZEN WATCH CO., LTD.	CFS-308	32.768	$\begin{gathered} 18 \text { (20 } \\ \text { trimmer) } \end{gathered}$	18	-
	NIHON DEMPA KOGYOCO., LTD.	MX-38T		$\begin{array}{\|c\|} \hline 22(20 \\ \text { trimmer }) \end{array}$	22	470k
	KINSEKI LTD.	P3		$\begin{gathered} 22(20 \\ \text { trimmer) } \end{gathered}$	22	3.3k

About the details of oscillators, please inquire the makers or the agencies.
Fig. 11 Recommended oscillation circuit
When using the A / D converter as the key input, it is recommended that the circuit structure shown in Fig. 12 be used.

Fig. 12 Recommended example of key circuit by A / D converter

