Combo (Spindle & VCM) Driver

HITACHI

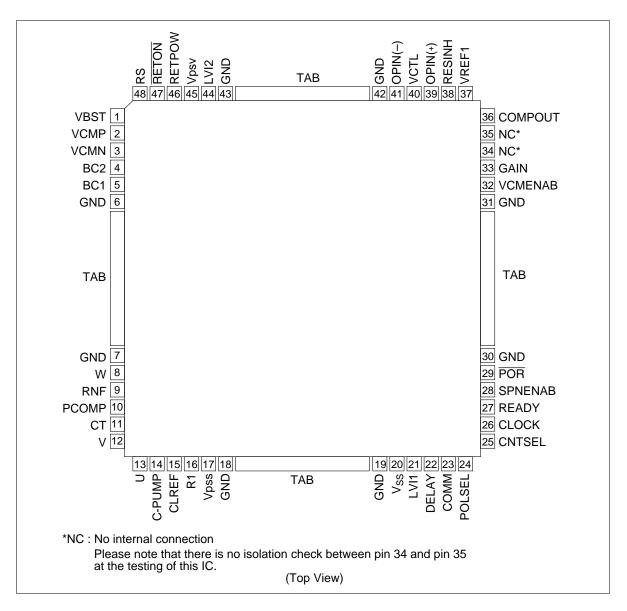
ADE-207-234A (Z) 2nd. Edition July 1997

Description

This COMBO Driver for HDD application consists of Sensorless Spindle Driver and BTL type VCM Driver.

Bipolar Process is applied and a "Soft Switching Circuit" for less commutation noise and a "Booster Circuit" for smaller Saturation Voltage of Output Transistor are also implemented.

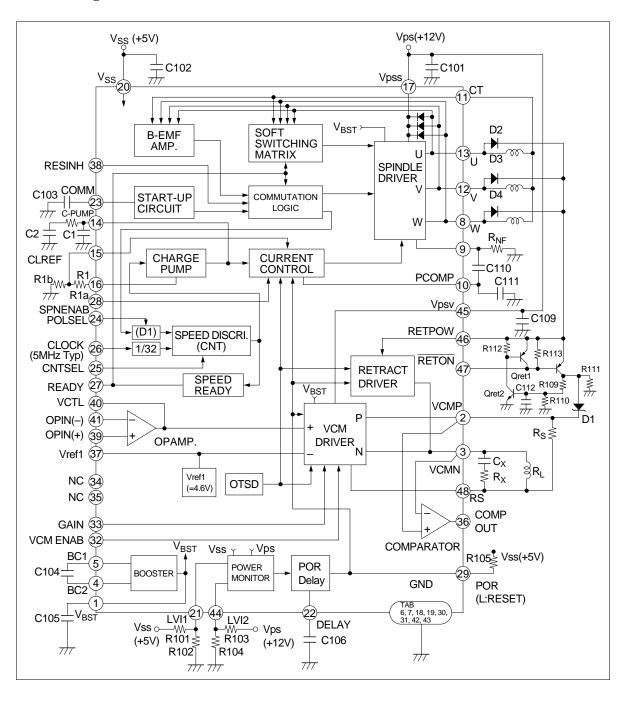
Features


- Soft Switching Driver
- Small Surface Mount Package: FP-48T (QFP48 Pin)
- Low thermal resistance: 30°C/W with 4 layer multi glass-epoxy board
- Low output saturation voltage
 - Spindle 1.44 V Typ (@1.8 A)
 - VCM 1.0 V Typ (@1.0 A)

Functions

- 2.2 A Max/3-phase motor driver
- 1.5 A Max BTL VCM Driver
- Auto retract
- Soft Switching Matrix
- Start up circuit
- Booster
- Speed Discriminator
- Internal Protector (OTSD, LVI)
- POR
- Power monitor

Pin Arrangement


Pin Description

Pin Number	Pin Name	Function
1	VBST	Boosted voltage output to realize the low output saturation voltage
2	VCMP	Output terminal on VCM driver
3	VCMN	Output terminal on VCM driver
4	BC2	To be attached the external capacitor for booster circuitry
5	BC1	ditto
6, TAB, 7	GND	Ground pins
8	W	W phase output terminal on spindle motor driver
9	RNF	Sensing input for output current on spindle motor driver
10	PCOMP	To be attached the external capacitor for phase compensation of spindle motor driver
11	CT	To be attached the center tap of the spindle motor for B-EMF sensing
12	V	V phase output terminal on spindle motor driver
13	U	U phase output terminal on spindle motor driver
14	C-PUMP	To be attached the external integral constants for speed control of spindle motor
15	CLREF	Reference voltage input for current limiter of spindle motor driver
16	R1	To be attached the external resistor for setting up the oscillation frequency of start-up circuitry and the gain of speed control loop of spindle motor driver
17	Vpss	Power supply for spindle motor driver
18, TAB, 19	GND	Ground pins
20	V _{ss}	Power supply for small signal block
21	LVI1	Sensing input for power monitor circuitry
22	DELAY	To be attached the external capacitor to generate the delay time for power on reset signal
23	COMM	To be attached the external capacitor for setting up the oscillation frequency
24	POLSEL	To be selected the input status corresponding to the pole number of spindle motor
25	CNTSEL	To select the count Number of Speed Discriminator
26	CLOCK	Master clock input for this IC
27	READY	Output of speed lock detector for spindle motor
28	SPNENAB	To select the status of spindle motor driver
29	POR	Output of power on reset signal for HDD system
30, TAB, 31	GND	Ground pins
32	VCMENAB	To select the status of VCM driver
33	GAIN	To select the Transfer conductance gm of VCM driver

Pin Description (cont)

Pin Number	Pin Name	Function
34	NC	No function
35	NC	No function
36	COMPOUT	Comparator output to detect the direction of output current on VCM driver
37	VREF1	Regulated voltage output to be used as reference of peripheral ICs
38	RESINH	Used for inhibiting the restart function of the spindle motor driver after power down
39	OPIN (+)	Non inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
40	VCTL	OP.Amp. output, this signal is used as control signal for VCM driver output
41	OPIN (–)	Inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
42, TAB, 43	GND	Ground pins
44	LVI2	Sensing input for power monitor circuitry
45	Vpsv	Power supply for VCM driver
46	RETPOW	Power supply for retract circuitry
47	RETON	To be attached the base terminal of external transistor for retracting
48	RS	Sensing input for output current on VCM driver

Block Diagram

Truth Table

Table 1Truth Table (1)

SPNENAB	Spindle Driver
Н	ON
Open	Cut off
L	Braking

Table 2 Truth Table (2)

VCMENAB	VCM Driver
Н	ON
L	Cut off

Table 3 Truth Table (3)

OTSD	Spindle Driver	VCM Driver	Retract Driver	POR
not Active	See table 1	See table 2	Cut off	Х
Active	Cut off	Cut off	ON	L

Table 4 Truth Table (4)

POLSEL	(D1)	Comment
Н	_	Test Mode
Open	1/12	for 8 poles motor
L	1/18	for 12 poles motor

Table 5 Truth Table (5)

CNTSEL	CNT	Rotation Speed (at CLOCK = 5 MHz)
Н	2605	3,600 rpm
Open	2084	4,500 rpm
L	1736	5,400 rpm

Table 6	Truth Table (6)
I anie h	i riith i anie (h)

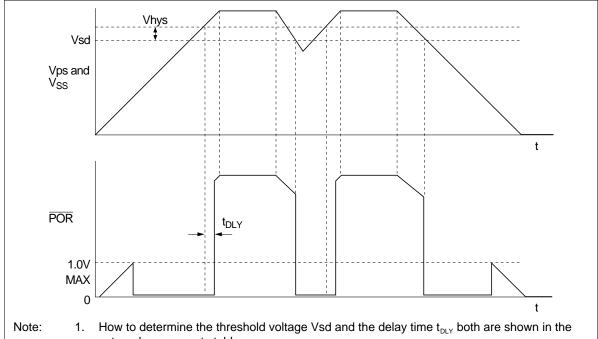
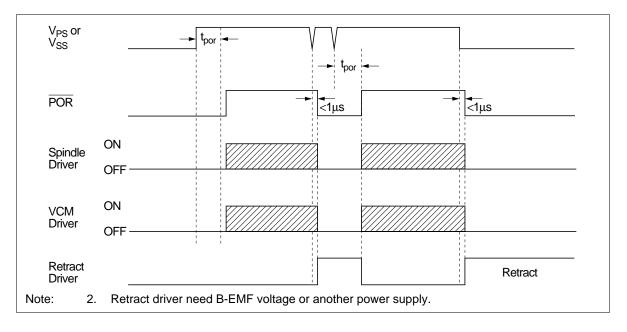
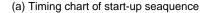

RESINH	Spindle Driver
Н	Inhibiting the restart after power down
L	Not inhibiting the restart after power down

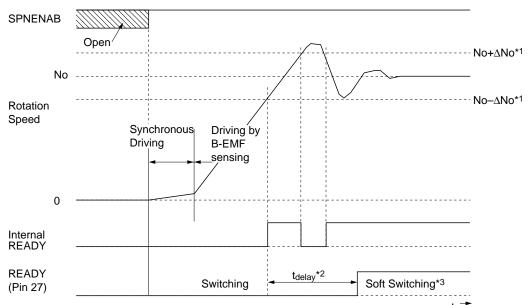
Table 7 Truth Table (7)

GAIN	VCM Driver
Н	High Gain Mode
L	Low Gain Mode


Timing Chart

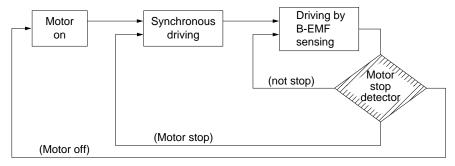
1. Power on reset (1)




external components table.

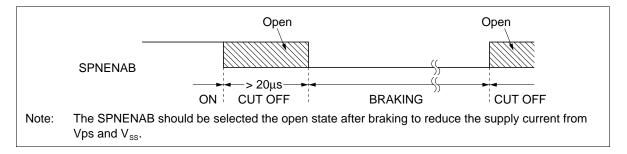
2. Power on reset (2)

3. Motor start-up seaquence

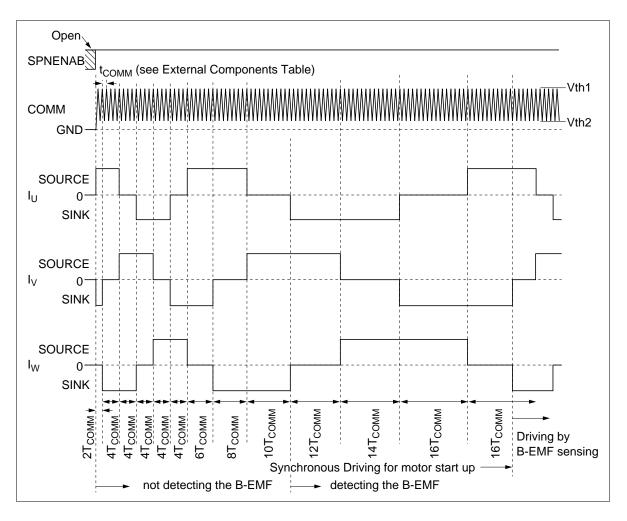

Note *1. Speed lock detection range ΔNo is as follows.

*2. READY output goes to High, if the rotation speed error keeps to be less than ΔNo longer time than tdelay.

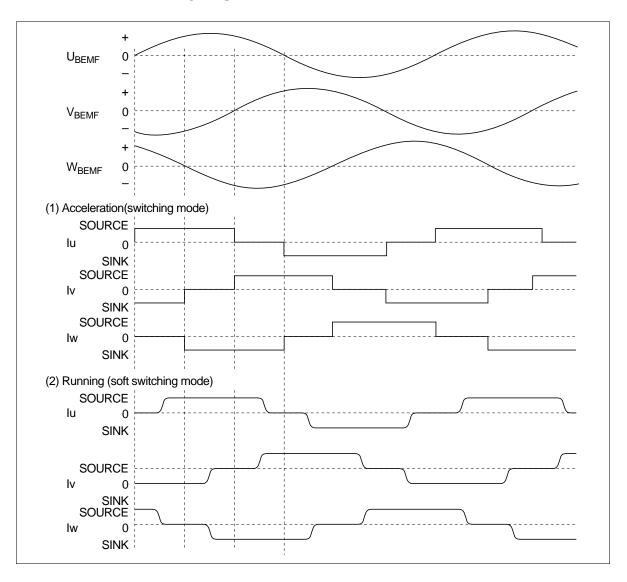
tdelay=
$$\frac{250 \cdot 10^7}{\text{fclk [Hz]}}$$
 [ms]

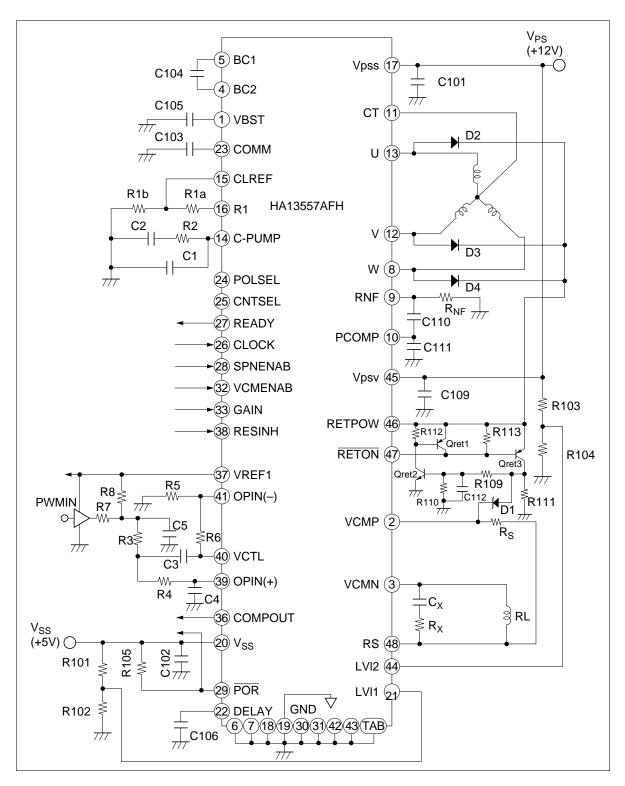

*3. The turning point of driving mode from switching synchronize to the turning point of READY output from Low to High.

(b) Retry circuitry for misstart-up



The HA13557FH has the motor stop detector as shown hatching block. This function is monitoring the situation of the motor while the motor is running by B-EMF sensing. If the motor will be caused a misstarting up, the motor will be automatically restarted within 200 ms after the motor stopped. This function increase the reliability for the motor starting up.


4. Braking & Shut down the Spindle Driver


5. Start-up of the Spindle motor

6. Acceleration and Running the spindle motor

Application

External Components

Parts No.	Recommended Value	Purpose	Note
R1a	(R1a + R1b) ≥ 10 kΩ	V/I converter	1, 4, 6
R1b	(R1a + R1b) ≥ 10 kΩ	_	
R2	_	Integral constant	3
R3 to R8	_	PWM filter	9
R101, R102	_	Setting of LVI1 voltage	7
R103, R104	_	Setting of LVI2 voltage	7
R105	5.6 kΩ	Pull up	
R109, R110	$(R109 + R110) \ge 10 \text{ k}\Omega$	Retout voltage adjust	
R111, R112, R113	_	Retract Driver	
RS	1.0 Ω	Current sensing for VCM Driver	10
Rnf	_	Current sensing for Spindle Driver	1
R _x	_	Reduction for gain peaking	11
C1, C2	_	Integral constant	3
C3 to C6	_	PWM filter	9
C _x	_	Reduction for gain peaking	11
C101	≥ 0.1 µF	Power supply by passing	
C102	≥ 0.1 µF	Power supply by passing	
C103	_	Oscillation for start-up	6
C104	0.22 μF	for booster	
C105	2.2 μF	for booster	
C106	≤ 0.33 µF	Delay for POR	8
C109	≥ 0.1 µF	Power supply by passing	
C110, C111	0.22 μF	Phase compensation	
C112	_	Phase compensation for Retract	
Qret1, Qret2, Qret3	_	Retract Driver	12
D1	TBD	Prevent of counter current	
D2, D3, D4	Si • Diode	for rectification	

Notes: 1. Output maximum current on spindle motor driver Ispnmax is determined by following equation.

$$Ispnmax = \frac{R1b}{R1a + R1b} \bullet \frac{V_{R1}}{R_{NF}}$$
 [A] (1)

where, V_{R1}: Reference Voltage on Pin 16 [V] (= 1.17)

2. Input clock frequency fclk on pin 26 is determined by following equation.

$$fclk = \frac{4}{5} \cdot N_O \cdot P \cdot D1 \cdot (CNT - 0.5)$$
 [Hz] (2)

where, No: Standard rotation speed [rpm]

P: Number of pole

D1: Dividing ratio on divider 1

D1 = 1/12 (when Pin 24 = Open) for 8 pole motor

= 1/18 (when Pin 24 = Low) for 12 pole motor

CNT:Count number on speed discriminator

3. Integral constants R2, C1 and C2 can be designed as follows.

$$\omega_{O} = \frac{1}{10} \cdot 2 \cdot \pi \cdot \frac{N_{O}}{60} \qquad [rad/s]$$
 (3)

$$R2 = \frac{1}{9.55} \cdot \frac{Rnf \cdot J \cdot \omega_{O} \cdot N_{O} \cdot (R1a + R1b)}{V_{R1} \cdot K_{T} \cdot Gctl}$$
 [\Omega]

$$C1 = \frac{1}{\sqrt{10} \cdot \omega_{O} \cdot R2}$$
 [F]

$$C2 = 10 \cdot C1$$
 [F] (6)

where, J: Moment of inertia [kg•cm•s²]

K_τ: Torque constant [kg•cm/A]

Gctl: Current control amp gain from pin 14 to pin 9 (= 0.794)

4. It is notice that rotation speed error Nerror is caused by leak current Icer2 on pin 14 and this error depend on R1a and R1b as following equation.

Nerror =
$$lcer2 \cdot \frac{(R1a + R1b)}{VR1} \cdot 100$$
 [%]

where, Icer2: leak current on pin 14 [A]

5. Oscillation period t_{COMM} on pin 23 which period determine the start up characteristics, is should be chosen as following equation.

$$t_{COMM} = \frac{1}{8} \cdot \sqrt{\frac{J}{P \cdot K_T \cdot Ispnmax}} \quad \text{to} \quad \frac{1}{4} \cdot \sqrt{\frac{J}{P \cdot K_T \cdot Ispnmax}}$$
 [s]

6. The capacitor C103 on pin 23 can be determined by t_{COMM} and following equation.

$$C103 = \frac{1}{4} \cdot \frac{VR1}{R1a + R1b} \cdot \frac{t_{COMM}}{Vth_H - Vth_L}$$
 [F]

where, Vth_H: Threshold voltage on start up circuit [V] (= 2.0)

Vth,: Threshold voltage on start up circuit [V] (= 0.5)

 LVI operatig voltage Vsd1, Vsd2 and its hysteresis voltage Vhys1, Vhys2 can be determined by following equations.

for V_{ss}

$$Vsd1 = \left(1 + \frac{R101}{R102}\right) \cdot Vth4 \qquad [V]$$
 (10)

$$Vhys1 = \left(1 + \frac{R101}{R102}\right) \bullet Vhyspm \qquad [V]$$
(11)

for Vps

$$Vsd2 = \left(1 + \frac{R103}{R104}\right) \bullet Vth3$$
 [V] (12)

$$Vhys2 = \left(1 + \frac{R103}{R104}\right) \bullet Vhyspm \qquad [V]$$
 (13)

where, Vth3, Vth4: Threshold voltage on pin 21 and pin 44 [V] (= 1.39)

Vhyspm: Hysteresis voltage on pin 21 and pin 44 [mV] (= 40)

Shut down voltage Vsd1, Vsd2 can be designed by the following range.

 $Vsd1 \ge 4.25 [V], Vsd2 \ge 10 [V]$

8. The delay time t_{DLY} of $\overline{\text{POR}}$ for power on reset is determined as follows.

$$t_{DLY} = \frac{C106 \cdot Vth5}{I_{CH3}}$$
 [s]

where, Vth5: Threshold voltage on pin 22 [V] (= 1.4)

 I_{CH3} : Charge current on pin 22 [μ A] (= 6)

 The differential voltage (Vctl – V_{REF1}) using for control of VCM driver depend on PWMDAC input PWMIN as follows.

$$VctI - V_{REF1} = 2 \cdot V_{REF1} \cdot \frac{D_{PWM} - 50}{100} \cdot \frac{R6}{R5} \cdot H_{FLT}(s)$$

$$(15)$$

where, D_{PWM}: Duty cycle on PWMIN [%]

 $H_{\text{FLT(S)}}$: Normalized transfer function from PWMIN to pin 40 (VctI) as shown in equation (17)

To be satisfied with above equation (15), it is notice that the ratio of R6 to R7 must be choosen as shown below.

$$\frac{R8}{R7} = 2 \cdot \frac{R6}{R5} \cdot \frac{1}{1 - \frac{R6}{R5}}$$
 (16)

$$= \frac{1}{\left[1 + s \cdot \left[C5 \cdot R / / - C3 \cdot (R / / + R3) \cdot \frac{R6}{R5} + C4 \cdot (R / / + R3 + R4)\right] + s^{2} \cdot \left[C5 \cdot C4 \cdot R / / \cdot (R3 + R4) - C5 \cdot C3 \cdot R / / \cdot R3 \cdot \frac{R6}{R5} + C3 \cdot C4 \cdot R4 \cdot (R / / + R3)\right] + s^{3} \cdot C3 \cdot C4 \cdot C5 \cdot R / / \cdot R3 \cdot R4}$$

where,
$$R// = \frac{R7 \cdot R8}{R7 + R8}$$
 (18)

If you choose the R// << R3, then equation (17) can be simplified as following equation.

$$H_{FLT}(s) = \frac{1}{1 + \frac{s}{\omega_O}} \cdot \frac{1}{1 + 2 \cdot \zeta \cdot \left(\frac{s}{\omega n}\right) + \left(\frac{s}{\omega n}\right)^2}$$
(19)

where,

$$\omega_{\rm O} = \frac{1}{\rm C5 \cdot R//} \tag{20}$$

$$\omega n = \frac{1}{\sqrt{C3 \cdot C4 \cdot R3 \cdot R4}}$$
 (21)

$$\zeta = \frac{\text{C4} \cdot (\text{R3} + \text{R4}) - \text{C3} \cdot \text{R3} \cdot \frac{\text{R6}}{\text{R5}}}{2 \cdot \sqrt{\text{C3} \cdot \text{C4} \cdot \text{R3} \cdot \text{R4}}}$$
(22)

 The relationship between the output current Ivcm and the input voltage (Vctl – V_{REF1}) on VCM driver is as follows.

$$Ivcm(s) = \left(VctI - V_{REF1}\right) \bullet Kvcm \bullet \frac{1}{Rs} \bullet Hvcm(s)$$
(23)

where, Vctl: Input control voltage for VCM driver on pin 40 [V]

V_{REF1}: Reference voltage on pin 37 [V] (= 4.6)

Kvcm: DC gain of VCM driver

(= 1.74 for High gain mode)

(= 0.44 for Low gain mode)

Hvcm(s): Transfer function of VCM driver as shown following equation

$$Hvcm(s) = \frac{1}{1 + 2 \cdot \zeta_{VCM} \cdot \left(\frac{s}{\omega_{VCM}}\right) + \left(\frac{s}{\omega_{VCM}}\right)^2}$$
(24)

where,

$$\omega_{\text{VCM}} = \sqrt{\omega_{\text{P}} \cdot \frac{\text{Rs}}{\text{Lm}}}$$
 (25)

$$\zeta_{VCM} = \frac{1}{2} \cdot \left(1 + \frac{R_L}{Rs} \right) \cdot \sqrt{\frac{1}{\omega_P} \cdot \frac{Rs}{Lm}}$$
 (26)

where, ωp: Bandwidth of internal power amplifiers for VCM driver [rad/s]

 $(= 3 \cdot \pi \cdot 10^6)$

Lm: Inductance of the VCM coil [H] R_i : Resistance of the VCM coil [Ω]

and from above equations the -3 dB bandwidth $f_{\mbox{\tiny VCMC}}$ of VCM driver is as following equation.

$$f_{VCMC} = \frac{\omega_{VCM}}{2 \cdot \pi} \cdot \sqrt{\left[1 - 2 \cdot \zeta_{VCM^2}\right] + \sqrt{\left[2 \cdot \zeta_{VCM^2} - 1\right]^2 + 1}}$$
(27)

11. The frequency response of VCM driver maybe have a gain peaking because of the resonation of the motor coil impedance. If you want to tune up for this characteristics, you can reduce the peaking by additional snubber circuit R_x and C_x as follows.

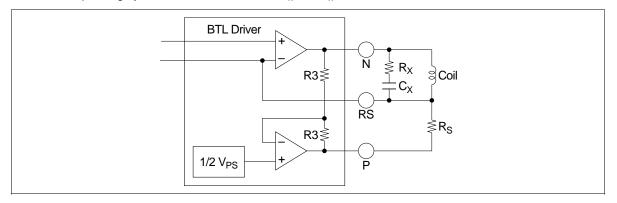
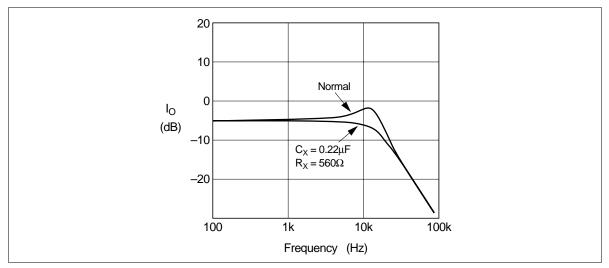



Figure 1 VCM Driver Block Diagram

(for example) $R_L = 14.7 \Omega$, $R_S = 1 \Omega$, L = 1.7 mH, Gain = L

12. The Qret3 collector voltage Vret is determined by

$$Vret = V_{RT} \left(\frac{R109}{R110} + 1 \right) \qquad (Vretpow \ge V_{RT} \left(\frac{R109}{R110} + 1 \right))$$

$$Iret \doteq \frac{Vret - V_F(D1) - Vsat_{VL}}{R_L + Rs}$$
(28)

where, Vretpow: Applied voltage on pin 46 [V]

 $\begin{array}{ll} V_{\text{RT}} \colon & \text{Reference voltage of Retract (toward voltage of Qret2) [V]} \\ V_{\text{F}} \, (\text{D1}) \colon & \text{Foward voltage of D1 [V]} \\ Vsat_{\text{VL}} \colon & \text{Saturation voltage on pin 3 at retracting [V]} \end{array}$

(See electrical characteristics)

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Rating	Unit	Notes
Power supply voltage	Vps	+15	V	1
Signal supply voltage	V _{ss}	+7	V	2
Input voltage	V _{IN}	V _{ss}	V	3
Output current-Spindle	lospn (Peak)	2.2	А	
	lospn (DC)	1.8	А	
Output current-VCM	lovcm (Peak)	1.5	Α	
	lovcm (DC)	1.0	А	
Power dissipation	P _T	5	W	4
Junction temperature	Tj	+150	°C	5, 6
Storage temperature	Tstg	-55 to +125	°C	

Notes: 1. Operating voltage range is 10.2 V to 13.8 V.

- 2. Operating voltage range is 4.25 V to 5.75 V.
- 3. Applied to Pin 24, 25, 26, 28, 32, 33 and pin 38
- 4. Operating junction temperature range is Tjop = 0° C to +125 $^{\circ}$ C.
- 5. ASO of upper and lower power transistor are shown below. Operating locus must be within the ASO.
- 6. The OTSD (Over Temperature Shut Down) function is built in this IC to avoid same damages by over heat of this chip. However, please note that if the junction temperature of this IC becomes higher than the operating maximum junction temperature (Tjopmax = 125°C), the reliability of this IC often goes down.
- 7. Thermal resistance: θ j-a \leq 30°C/W with 4 layer multi glass-epoxy board

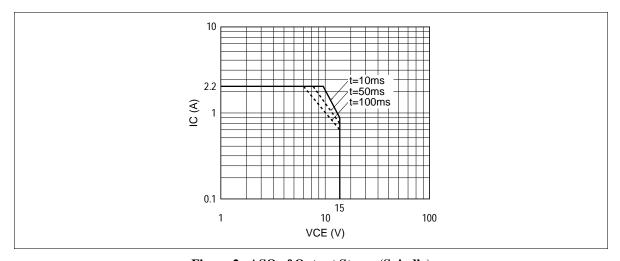


Figure 2 ASO of Output Stages (Spindle)

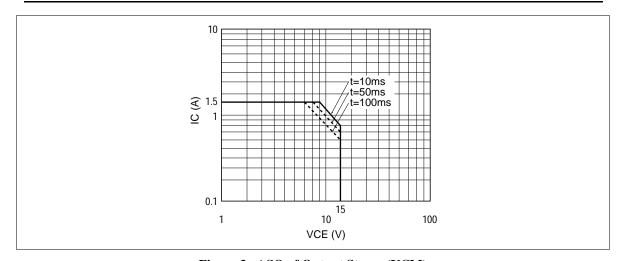


Figure 3 ASO of Output Stages (VCM)

Electrical Characteristics (Ta = 25°C, Vps = 12 V, V_{ss} = 5 V)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	Applicable Pins	Note
Supply current	for V _{ss}	I _{SS0}	_	5.8	7.0	mA	SPNENAB = Open VCMENAB = L	20	
		I _{SS1}	_	21	27	mA	SPNENAB = H VCMENAB = H	20	
	for Vps	lps0	_	1.7	2.2	mA	SPNENAB = Open VCMENAB = L	17, 45	
		lps1	_	19	24	mA	SPNENAB = H VCMENAB = H	17, 45	
Logic input 1 (GAIN) (RESINH)	Input low voltage	V _{IL1}	_	_	0.8	V		33, 38	
	Input high voltage	V_{IH1}	2.0	_	_	V			
	Input low current	I _{IL1}	_	_	±10	μΑ	Input = GND		
	Input high current	I _{IH1}	_	_	±10	μА	Input = 5.0 V		
Logic input 2 (CLOCK)	Input low voltage	V_{IL2}	_	_	0.8	V		26	
	Input high voltage	V _{IH2}	3.5	_	_	V			
	Input low current	I _{IL2}	_	-180	-260	μΑ	Input = GND	•	
	Input high current	I _{IH2}	_	230	330	μА	Input = 5.0 V		
Logic input 3 (VCMENAB)	Input low voltage	V_{IL3}	_	_	0.8	V		32	
	Input high voltage	V_{IH3}	2.0	-	_	V			
	Input low current	I _{IL3}	_	_	±10	μΑ	Input = GND		
	Input high current	I _{IH3}	_	_	330	μΑ	Input = 5.0 V		
Logic input 4 (SPNENB)	Input low voltage	V_{IL4}	_	_	1.0	V		28	
	Input middle voltage	V_{IM4}	2.0	_	3.1	V			
	Input high voltage	V_{IH4}	3.9	_	_	V			

Electrical Characteristics (Ta = 25 °C, Vps = 12 V, V_{SS} = 5 V) (cont)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	Applicable Pins	Note
Logic input 4 (SPNENB)	Input low current	I _{IL4}	-75	-105	-150	μΑ	Input = GND	28	
	Input high current	I _{IH4}	75	105	150	μΑ	Input = 5.0V	_	
	Input dead current	I _{DEAD}	±10	_		μΑ		_	
Logic input 5 (POLSEL) (CONTSEL)	Input low voltage	$V_{\text{IL}5}$	_	_	1.0	V		24, 25	
	Input middle voltage	V _{IM5}	2.0	_	3.1	V		_	
	Input high voltage	V _{IH5}	3.9	_	_	V		_	
	Input low current	I _{IL5}	-38	-53	- 75	μΑ	Input = GND	_	
	Input high current	I _{IH5}	38	53	75	μА	Input = 5.0V	_	
Spindle driver	Total saturation voltage	Vsatspn	_	1.44	2.0	V	Ispn = 1.8A	8, 12, 13	
			_	_	0.75	V	Ispn = 0.6A	_	
	Saturation at braking	Vbreak	_	_	0.7	V	Ibreak = 0.6A	_	
	Leak current	Icer1	_	_	±2.0	mA	SPNENAB=Open	_	
	Current limiter reference voltage	V _{ocL}	430	480	530	mV	$V_{CLREF} = 500 \text{mV}$ $R_{NF} = 1.0 \Omega$	9	
	Control amp gain	Gctl	_	-2	±2	dB	$R_{NF} = 1.0\Omega$	9, 14	
	Clamp diode forward voltage	Vdf	1.6	1.9	2.2	V	Idf = 0.5A	8, 12, 13	
B-EMF amp.	Input sensitivity	Vmin	60	90	125	mVp-p)	8, 12, 13	1
Charge pump	Reference voltage	VR1	1.06	1.17	1.28	V	R1a+R1b = $24k\Omega$	14, 16	
	Charge current	I _{CH1}	40	45	50	μΑ	C – PUMP = 1.0V		
	Discharge current	I _{DIS1}	-40	-45	- 50	μΑ		_	
	Leak current	lcer2	_	_	±50	nA		=	

Electrical Characteristics (Ta = 25° C, Vps = 12 V, V_{SS} = 5 V) (cont)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	Applicable Pins	Note
Speed discri	Operating frequency	fclk	_	_	8.0	MHz		26	
Start up circuit	Threshold voltage	Vth _H	1.6	1.8	2.0	V		16, 23	
		Vth∟	0.3	0.5	0.7	V			
	Charge current	I _{CH2}	21	23	26	μА	R1a + R1b = 24 $k\Omega$	_	
	Discharge current	I _{DIS2}	-19	-22	-25	μА	COMM = 1 V	_	
READY	Output high voltage	Vohr	V _{SS} - 0.4	_	V _{ss}	V	$I_{\circ} = -1 \text{ mA}$	27	
	Output low voltage	Volr	_	_	0.4	V	$I_{o} = 1 \text{ mA}$		
VCM driver	Total saturation voltage	Vsatvcm	_	1.0	1.38	V	Ivcm = 1.0 A	2, 3	
			_	0.5	0.69	V	Ivcm = 0.5 A		
	Output leak current	Icer3	_	_	±2.0	mA	Vce = 15 V	_	
	Total output offset voltage	Voff(H)	_	_	±20	mV	$V_{CTL} = OP (-)$ $V_{REF} = OP (+)$	2, 48	
		Voff(L)		_	±10	mV			
	Output quiescent voltage	Vqvcm	5.6	6.0	6.4	V	$R_L = 14 \Omega,$ $R_S = 1.0 \Omega$	2, 3	
	Total gain bandwidth	В	_	26	_	kHz	$R_S = 1.0 \Omega$, $R_L = 28 \Omega$	2, 3	1
			_	50	_	kHz	$R_S = 1.0 \Omega$, $R_L = 14 \Omega$		
	Transfer gain	gm (H)	_	1.74	±5%	A/V	Higain-mode $R_S = 1.0 \Omega$, $R_L = 14 \Omega$	2, 34, 48	
		gm (L)	_	0.44	±5%	A/V	Logain-mode $R_S = 1.0 \Omega$, $R_L = 14 \Omega$	_	

Electrical Characteristics (Ta = 25° C, Vps = 12 V, V_{SS} = 5 V) (cont)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	Applicable Pins	Note
Retract driver	Retpow voltage	Vretpow	0.8	_	_	V	Ireton = 0.1 mA	46	
	Retout sink current	Ireton	5	8	_	mA	Vretpow = 4.0 V	_	
	Output leak current	Icer4	_		±10	μΑ	Vreton = 15 V, Vretpow = 15 V	37	
	Low side saturation voltage	VsatVL	0.2	0.33	0.45	V	Iret = 0.1 A	3	
OP Amp	Input current	linop	_	_	±500	nA		39, 41	
	Input offset voltage	Vosop	_	_	(±7)	mV		_	1
	Common mode input voltage range	Vcmop	0	_	Vps - 0.2	V			
	Output high voltage	Vohop	Vps - 1.3	_	_	V	lout = 1.0 mA	40	
	Output low voltage	Volop	_	_	1.1	V	lout = 1.0 mA	_	
Comparator	Input sensitivity	Vmin2	±9	0	_	mV		2, 3, 36	1
	Output low voltage	Volcp	_	_	0.4	V	I _O = 1 mA	36	
	Output high voltage	Vohcp	V _{SS} – 1.8	_	V _{SS}	V	I _O = 1 mA	_	
Vref1	Output voltage	Vref1	_	4.0	±3%	V	I _o = 20 mA	37	
	Output resistance	Ro1	_	_	5.0	Ω	I _O = 20 mA	_	
Power monitor	Threshold voltage	Vth3	-2%	1.39	+3%	V	V _{SS} = 5 V	44	2
	Hysteresis	Vhyspm1	25	40	55	mV	V _{SS} = 5 V	_	
	Threshold voltage	Vth4	-2%	1.38	+3%	V	V _{SS} = 4 V	21	2
	Hysteresis	Vhyspm2	25	40	55	mV	V _{SS} = 4 V	_	

Electrical Characteristics (Ta = 25°C, Vps = 12 V, $V_{SS} = 5 \text{ V}$) (cont)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	Applicable Pins	Note
POR	Output low voltage	V_{OL2}	_	_	0.4	V	I _O = 1 mA	29	
		V _{OL3}	_	_	0.4	V	$I_O = 1 \text{ mA}$ $V_{SS} = Vps = 1.0 \text{ V}$	_	
	Output leak current	Icer5		_	±10	μА	Vpor = 7 V	_	
	Threshold voltage	Vth5		1.4	±5%	V		22	
	Charge current	I _{CH3}	_	6	±25%	μΑ		_	
	Discharge current	I _{DIS3}	40	_	_	mA		_	
OTSD	Operating temperature	Tsd	125	150	_	°C			1
	Hysteresis	Thys	_	25	_	°C			1

Notes: 1. Design guide only.

2. Variations of threshold voltage Vth3 and Vth4 depending on the power supply $V_{\rm ss}$ are shown in figure 4.

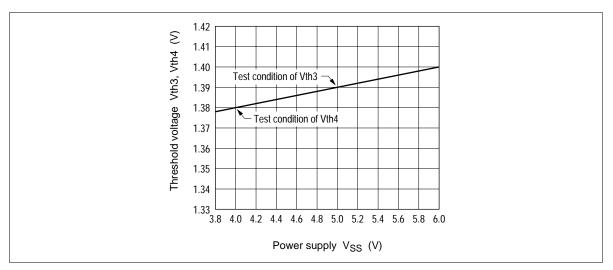
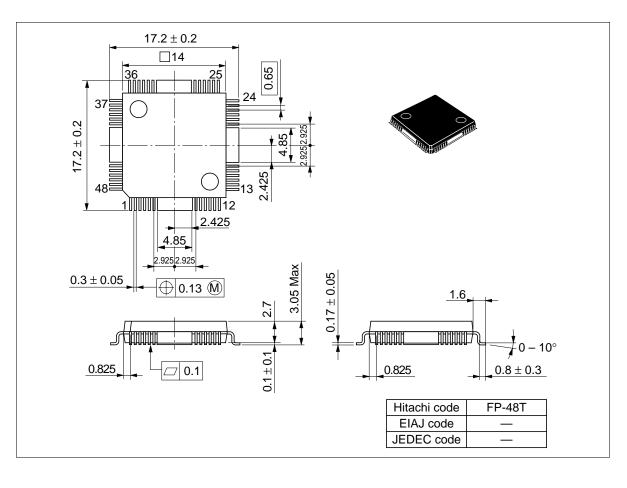



Figure 4

Package Dimensions

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.