100MHz Current Feedback Video Amplifier with Disable

Features

- This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Wide Unity Gain Bandwidth 105MHz (Min)
- Slew Rate $800 \mathrm{~V} / \mu \mathrm{s}$
- Output Current $\pm 30 \mathrm{~mA}$ (Min)
- Drives 3.5 V into 75Ω
- Differential Gain 0.025\%
- Differential Phase 0.025 Deg
- Low Input Noise Voltage $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Supply Current \qquad .10mA (Max)
- Wide Supply Range .$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Output Enable/Disable
- High Performance Replacement for EL2020/883

Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- Video Distribution Amp/Coax Cable Driver
- Flash A/D Driver
- Waveform Generator Output Driver
- Current to Voltage Converter; D/A Output Buffer
- Radar Systems
- Imaging Systems

Description

The HA-5020/883 is a wide bandwidth, high slew rate amplifier optimized for video applications and gains between 1 and 10. Manufactured on Intersil's Reduced Feature Complementary Bipolar DI process, this amplifier uses current mode feedback to maintain higher bandwidth at a given gain than conventional voltage feedback amplifiers. Since it is a closed loop device, the HA-5020/883 offers better gain accuracy and lower distortion than open loop buffers.
The HA-5020/883 features low differential gain and phase and will drive two double terminated 75Ω coax cables to video levels with low distortion. Adding a gain flatness performance of 0.1 dB makes this amplifier ideal for demanding video applications. The bandwidth and slew rate of the HA-5020/ 883 are relatively independent of closed loop gain. The 105 MHz unity gain bandwidth only decreases to 77 MHz at a gain of 10. The HA-5020/883 used in place of a conventional op amp will yield a significant improvement in the speed power product. To further reduce power, the HA-5020/883 has a disable function which significantly reduces supply current, while forcing the output to a true high impedance state. This allows the outputs of multiple amplifiers to be wire-OR'd into multiplexer configurations. The device also includes output short circuit protection and output offset voltage adjustment.
The HA-5020/883 offers significant enhancements over competing amplifiers, such as the EL2020. Improvements include unity gain bandwidth, slew rate, video performance, lower supply current, and superior DC specifications.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA7-5020/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CerDIP
HA4-5020/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC

Pinouts

Absolute Maximum Ratings	
Voltage Between V+ and V- Terminals	36 V
Differential Input Voltage.	8V
Voltage at Either Input Terminal	to V-
Peak Output Current.	Full Short Circuit Protected
Junction Temperature (T_{J})	$+175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating.	<2000V
Lead Temperature (Soldering 10s)	$+300^{\circ} \mathrm{C}$

Voltage Between V+ and V- Terminals
Differential Input Voltage.

Junction Temperature (T_{J})
ESD Rating.
Lead Temperature (Soldering 10s)
$+300^{\circ} \mathrm{C}$

Thermal Information (Typical)

Thermal Package Characteristics	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
CerDIP Package	$115^{\circ} \mathrm{C} / \mathrm{W}$	$30^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic LCC Package	$75^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
Package Power Dissipation Limit at $+75^{\circ} \mathrm{C}$ for $\mathrm{T}_{J} \leq+175^{\circ} \mathrm{C}$		
CerDIP Package		0.87W
Ceramic LCC Package		1.33W
Package Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$		
CerDIP Package		$7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Ceramic LCC Package		3.3mW/ ${ }^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

$\begin{array}{lll}\text { Operating Temperature Range } \ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \mathrm{V}_{\text {INCM }} \leq 1 / 2(\mathrm{~V}+-\mathrm{V}-) & \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega \\ \text { Operating Supply Voltage } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} & R_{\mathrm{L}} \geq 400 \Omega & \mathrm{~V}_{\overline{\text { DISABLE }}}=\mathrm{V}+\text { or } 0 \mathrm{~V}\end{array}$
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=0 \Omega, \mathrm{~A}_{\mathrm{VCL}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\text {LOAD }}=400 \Omega, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DISABLE }}=\mathrm{V}+$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-8	8	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-10	10	mV
Common Mode Rejection Ratio	+CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=+10 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \\ & \mathrm{~V}-=-25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	60	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	50	-	dB
	-CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}, \mathrm{~V}+=25 \mathrm{~V}, \\ & \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	60	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	50	-	dB
Power Supply Rejection Ratio	+PSRR	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} ; \\ & \mathrm{V}_{+}=18 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	64	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	60	-	dB
	-PSRR	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} ; \\ & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-18 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	64	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	60	-	dB
Non-Inverting (+IN) Current	I_{BP}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-8	8	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-20	20	$\mu \mathrm{A}$
+IN Common Mode Rejection	IBPCMP	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=+10 \mathrm{~V}, \mathrm{~V}_{+}=5 \mathrm{~V}, \\ & \mathrm{~V}-=-25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.1	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
	IBPCMN	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}, \mathrm{~V}+=25 \mathrm{~V}, \\ & \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.1	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
Non-Inverting (+IN) Input Impedance	$+\mathrm{R}_{\text {IN }}$	Calculated 1/IBPCMP	1	$+25^{\circ} \mathrm{C}$	10	-	$\mathrm{M} \Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2	-	$\mathrm{M} \Omega$
+IN Power Supply Rejection	IBPPSP	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} ; \\ & \mathrm{V}_{+}=18 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.06	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.2	$\mu \mathrm{A} / \mathrm{V}$
	IBPPSN	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} ; \\ & \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-18 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.06	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.2	$\mu \mathrm{A} / \mathrm{V}$
Inverting Input (-IN) Current	I_{BN}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-20	20	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-50	50	$\mu \mathrm{A}$

Specifications HA-5020/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=0 \Omega, \mathrm{~A}_{\mathrm{VCL}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\text {LOAD }}=400 \Omega, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DISABLE}}=\mathrm{V}+$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
-IN Common Mode Rejection	IBNCMP	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=+10 \mathrm{~V}, \mathrm{~V}_{+}=5 \mathrm{~V}, \\ & \mathrm{~V}-=-25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.4	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
	IBNCMN	$\begin{aligned} & \Delta V_{\mathrm{CM}}=-10 \mathrm{~V}, \mathrm{~V}_{+}=25 \mathrm{~V}, \\ & \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.4	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
-IN Power Supply Rejection	IBNPSP	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} ; \\ & \mathrm{V}+=18 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.2	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
	IBNPSN	$\begin{aligned} & \Delta V_{\text {SUP }}=13.5 \mathrm{~V}, \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} ; \\ & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-18 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	0.2	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
Common Mode Range	+CMR	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-25 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	10	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	10	-	V
	-CMR	$\mathrm{V}+=25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	-10	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-10	V
Transimpedance	+ $\mathrm{A}_{\text {ZOL1 }}$	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}=0 \text { to } \\ & 10 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	1	-	$\mathrm{M} \Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	1	-	$\mathrm{M} \Omega$
	- $\mathrm{AzOL1}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}=0 \text { to } \\ & -10 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	1	-	$\mathrm{M} \Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	1	-	$\mathrm{M} \Omega$
Output Voltage Swing	$+\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{IN}}=12.8 \mathrm{~V}$	1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	12	-	V
			3	$-55^{\circ} \mathrm{C}$	11	-	V
	- $\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{IN}}=-12.8 \mathrm{~V}$	1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	-	-12	V
			3	$-55^{\circ} \mathrm{C}$	-	-11	V
	+ $\mathrm{V}_{\text {OUT5 }}$	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	2	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2	-	V
	$-\mathrm{V}_{\text {OUT5 }}$	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=-3 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-2	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-2	V
Output Current	${ }^{+}$OUT	Note 1	1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	30	-	mA
			3	$-55^{\circ} \mathrm{C}$	27.5	-	mA
	- ${ }_{\text {OUT }}$	Note 1	1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	-	-30	mA
			3	$-55^{\circ} \mathrm{C}$	-	-27.5	mA
Short Circuit Output Current	$+\mathrm{I}_{\text {Sc }}$	$\mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	50	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	50	-	mA
	${ }^{-1} \mathrm{SC}$	$\mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	-50	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-50	mA
Disabled Output Current	$+_{\text {LEAK }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\text { Open, } \mathrm{V}_{\mathrm{DIS}}=0 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
			3	$-55^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$	2	$+125^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
	${ }^{-1}$ LEAK	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\text { Open, } \mathrm{V}_{\mathrm{DIS}}=0 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
			3	$-55^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=-2 \mathrm{~V}$	2	$+125^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=0 \Omega, \mathrm{~A}_{\mathrm{VCL}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\text {LOAD }}=400 \Omega, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DISABLE }}=\mathrm{V}_{+}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Disable Pin Input Current	ILOGIC	$\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}$	1,2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	-1	0	mA
			3	$-55^{\circ} \mathrm{C}$	-1.5	0	mA
Minimum DISABLE Pin Current to Disable	$\mathrm{I}_{\text {DIS }}$	Note 2	1	$+25^{\circ} \mathrm{C}$	-	350	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	350	$\mu \mathrm{A}$
Maximum DISABLE Pin Current to Enable	I_{EN}	Note 3	1	$+25^{\circ} \mathrm{C}$	20	-	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	20	-	$\mu \mathrm{A}$
Quiescent Power Supply Current	I_{CC}	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	1	$+25^{\circ} \mathrm{C}$	-	10	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	10	mA
	I_{EE}	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	1	$+25^{\circ} \mathrm{C}$	-10	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-10	-	mA
Disabled Power Supply Current	$\mathrm{I}_{\text {CCDIS }}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {DIS }}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	5.6	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	7.5	mA
	$I_{\text {EEDIS }}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {DIS }}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-5.6	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-7.5	-	mA
Offset Voltage Adjustment	$+\mathrm{V}_{\text {ADJ }}$	Note 4	1	$+25^{\circ} \mathrm{C}$	30	-	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	25	-	mV
	$-\mathrm{V}_{\text {ADJ }}$	Note 4	1	$+25^{\circ} \mathrm{C}$	-	-30	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-25	mV

NOTES:

1. Guaranteed from $\mathrm{V}_{\text {OUT }}$ test by $\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} / 400 \Omega$.
2. This is the minimum current which must be sourced from the DISABLE pin, to disable the output. The output is considered disabled when $\mathrm{V}_{\text {OUT }} \leq 10 \mathrm{mV}$. Conditions are: $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$. The test is performed by sourcing $350 \mu \mathrm{~A}$ from the DISABLE pin, and testing that the output decreases below the test limit $(10 \mathrm{mV})$.
3. This is the maximum current that can be sourced from the DISABLE pin with the device remaining enabled. The device is considered disabled when the supply current decreases by at least 0.5 mA . Conditions are: $R_{L}=400 \Omega$. Test is performed by sourcing $20 \mu \mathrm{~A}$ from the DISABLE pin, and testing that the supply current decreases by no more than the test limit (0.5 mA).
4. The offset adjustment range is referred to the output. The inverting input current ($-I_{\text {BIAS }}$) can be adjusted with an external pot between pins 1 and 5 , wiper connected to V^{2}. Since $-\mathrm{I}_{\text {BIAS }}$ flows through R_{F}, an adjustment of offset voltage results. The amount of offset adjustment is proportional to the value of R_{F}. Test conditions are: $\mathrm{R}_{\mathrm{L}}=$ Open, $10 \mathrm{k} \Omega$ from pin 5 to $\mathrm{V}_{+}, 1 \mathrm{k} \Omega$ from pin 1 to V_{+}, for $+\mathrm{V}_{\mathrm{ADJ}}$; $\mathrm{R}_{\mathrm{L}}=$ Open, $1 \mathrm{k} \Omega$ from pin 5 to $\mathrm{V}_{+}, 10 \mathrm{k} \Omega$ from pin 1 to V_{+}, for $-\mathrm{V}_{\mathrm{ADJ}}$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=50 \Omega, \mathrm{R}_{\text {LOAD }}=400 \Omega, \mathrm{C}_{\mathrm{LOAD}} \leq 10 \mathrm{pF}, \mathrm{A}_{\mathrm{VCL}}=+1 \mathrm{~V} / \mathrm{V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Slew Rate	+SR	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$ to +10 V	4	$+25^{\circ} \mathrm{C}$	600	-	V/us
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	400	-	V/us
	-SR	$\mathrm{V}_{\text {IN }}=+10 \mathrm{~V}$ to -10 V	4	$+25^{\circ} \mathrm{C}$	600	-	V/us
			5,6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	400	-	V/us

Specifications HA-5020/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, R_{\text {SOURCE }}=50 \Omega, \mathrm{R}_{\text {LOAD }}=400 \Omega, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$, $\mathrm{V}_{\text {DISABLE }}=\mathrm{V}_{+}, \mathrm{C}_{\text {LOAD }} \leq 10 \mathrm{pF}, \mathrm{A}_{\mathrm{VCL}}=+1 \mathrm{~V} / \mathrm{V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
-3dB Bandwidth	BW_{1}	$\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV}$ RMS, $\mathrm{A}_{\mathrm{V}}=+1$	1	$+25^{\circ} \mathrm{C}$	105	-	MHz
	BW_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=100 \mathrm{mV}_{\mathrm{RMS}}, A_{\mathrm{V}}=+10, \\ & \mathrm{R}_{\mathrm{F}}=360 \Omega, \mathrm{R}_{\mathrm{L}}=\text { Open } \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	77	-	MHz
Gain Flatness	GF_{5}	$\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{RMS}, \mathrm{f}=5 \mathrm{MHz}$	1	$+25^{\circ} \mathrm{C}$	-0.075	+0.075	dB
	GF_{10}	$\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{V}_{\text {RMS }}, \mathrm{f}=10 \mathrm{MHz}$	1	$+25^{\circ} \mathrm{C}$	-0.2	+0.2	dB
Rise Time	t_{R}	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	1, 2	$+25^{\circ} \mathrm{C}$	-	3.7	ns
Fall Time	t_{F}	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	1,3	$+25^{\circ} \mathrm{C}$	-	4.0	ns
Overshoot	+OVS	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	1	$+25^{\circ} \mathrm{C}$	-	18.0	\%
	-OVS	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	1	$+25^{\circ} \mathrm{C}$	-	16.6	\%
Slew Rate	$+\mathrm{SR}_{10}$	$\begin{aligned} & V_{O}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, A_{V}=+10, \\ & R_{F}=360 \Omega, R_{L}=\text { Open } \end{aligned}$	1, 4	$+25^{\circ} \mathrm{C}$	1070	-	V/us
	$-\mathrm{SR}_{10}$	$\begin{aligned} & V_{O}=10 \mathrm{~V} \text { to }-10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+10, \\ & R_{F}=360 \Omega, R_{L}=\text { Open } \end{aligned}$	1, 5	$+25^{\circ} \mathrm{C}$	860	-	V/us
Disable Time	$+t_{\text {DIS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V} \text { to } 0 \mathrm{~V}, 50 \% \text { of } \mathrm{V}_{\text {DIS }} \text { to } \\ & 90 \% \mathrm{~V}_{\mathrm{O}} \end{aligned}$	1, 6	$+25^{\circ} \mathrm{C}$	-	3.13	$\mu \mathrm{S}$
	${ }^{-t_{\text {DIS }}}$	$\begin{aligned} & V_{\mathrm{O}}=-2 \mathrm{~V} \text { to } 0 \mathrm{~V}, 50 \% \text { of } \mathrm{V}_{\text {DIS }} \text { to } \\ & 90 \% \mathrm{~V}_{\mathrm{O}} \end{aligned}$	1,6	$+25^{\circ} \mathrm{C}$	-	2.44	$\mu \mathrm{s}$
Enable Time	+ten	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $2 \mathrm{~V}, 50 \%$ to 90%	1,7	$+25^{\circ} \mathrm{C}$	-	1.45	$\mu \mathrm{s}$
	-ten	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to -2V, 50% to 90%	1,7	$+25^{\circ} \mathrm{C}$	-	1.49	$\mu \mathrm{s}$

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
2. Measured from 10% to 90% of the output waveform.
3. Measured from 90% to 10% of the output waveform.
4. Measured from 25% to 75% of the output waveform.
5. Measured from 75% to 25% of the output waveform.
6. $\overline{\text { DISABLE }}=+15 \mathrm{~V}$ to 0 V . Measured from the 50% of $\overline{\text { DISABLE }}$ to $\mathrm{V}_{\text {OUT }}= \pm 200 \mathrm{mV}$.
7. $\overline{\text { DISABLE }}=0 \mathrm{~V}$ to +15 V . Measured from the 50% of DISABLE to $\mathrm{V}_{\text {OUT }}= \pm 1.8 \mathrm{~V}$.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 AND 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	$1,2,3,4,5,6$
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:
$65 \times 60 \times 19$ mils ± 1 mils
$1640 \mu \mathrm{~m} \times 1520 \mu \mathrm{~m} \times 483 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$
METALLIZATION:
Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$5.77 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$ at 30 mA
SUBSTRATE POTENTIAL (Powered Up): V-
GLASSIVATION:
Type: Nitride over Silox
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
TRANSISTOR COUNT: 62
PROCESS: Bipolar Dielectric Isolation
Metallization Mask Layout
HA-5020/883

Test Circuit (Applies to Table 1)

Test Waveforms

SIMPLIFIED TEST CIRCUIT FOR LARGE AND SMALL SIGNAL PULSE RESPONSE (Applies to Tables 2 and 3)

NOTE: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$
$R_{F}=1 \mathrm{k} \Omega, R_{S}=50 \Omega$
$R_{L}=400 \Omega$ For Large Signal
$R_{L}=100 \Omega$ For Small Signal

LARGE SIGNAL WAVEFORM

$A_{V}=+10$ TEST CIRCUIT

NOTE: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+10, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$
$R_{F}=360 \Omega, R_{G}=40 \Omega$
$R_{S}=50 \Omega, R_{L}=$ Open

SMALL SIGNAL WAVEFORM

NOTE: $A_{V}=+1:+S R,-S R$
$A_{V}=+10:+S R 10,-$ SR10

Test Waveforms (Continued)

SIMPLIFIED TEST CIRCUIT FOR ENABLE/DISABLE TIMES

$$
\text { NOTE: } \begin{aligned}
& V_{S}= \pm 15 \mathrm{~V}, A_{V}=+1, C_{L} \leq 10 p F \\
& R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega
\end{aligned}
$$

POSITIVE ENABLE/DISABLE SWITCHING WAVEFORMS

NEGATIVE ENABLE/DISABLE SWITCHING WAVEFORMS

Burn-In Circuits

4. Corner leads ($1, N, N / 2$, and $N / 2+1$) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling Dimension: Inch.
11. Lead Finish: Type A.
12. Materials: Compliant to MIL-M-38510.

Packaging (Continued)

J20.A MIL-STD-1835 CQCC1-N20 (C-2)
20 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.060	0.100	1.52	2.54	6,7
A1	0.050	0.088	1.27	2.23	7
B	-	-	-	-	4
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072 REF		1.83 REF		-
B3	0.006	0.022	0.15	0.56	-
D	0.342	0.358	8.69	9.09	-
D1	0.200 BSC		5.08 BSC		-
D2	0.100 BSC		2.54 BSC		-
D3	-	0.358	-	9.09	2
E	0.342	0.358	8.69	9.09	-
E1	0.200 BSC		5.08 BSC		-
E2	0.100 BSC		2.54 BSC		-
E3	-	0.358	-	9.09	2
e	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.90	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	5		5		3
NE	5		5		3
N	20		20		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch (0.381 mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " N " is the maximum number of terminals. Symbols " $N D$ " and "NE" are the number of terminals along the sides of length " D " and " E ", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be electrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.
8. Lead Finish: Type A.
9. Materials: Compliant to MIL-M-38510.

100MHz Current Feedback Video Amplifier with Disable

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

+INPUT BIAS CURRENT vs TEMPERATURE
Average of 30 Units from 3 Lots

INPUT OFFSET VOLTAGE vs TEMPERATURE
Absolute Value Average of 30 Units from 3 Lots
-INPUT BIAS CURRENT vs TEMPERATURE
Absolute Value Average of 30 Units from 3 Lots

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

TRANSIMPEDANCE vs TEMPERATURE
Average of 30 Units from 3 Lots

DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE
Average of 30 Units from 3 Lots

DISABLE MODE FEEDTHROUGH vs FREQUENCY

SUPPLY CURRENT vs SUPPLY VOLTAGE
Average of 30 Units from 3 Lots

SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

DISABLED OUTPUT LEAKAGE vs TEMPERATURE
Average of 30 Units from 3 Lots

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

ENABLE/DISABLE TIME vs OUTPUT VOLTAGE
Average of 9 Units from 3 Lots

INVERTING FREQUENCY RESPONSE

BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

NON-INVERTING GAIN vs FREQUENCY

PHASE vs FREQUENCY

BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $V_{\text {Supply }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE ($A_{V}=+2$)

REJECTION RATIOS vs TEMPERATURE
Average of 30 Units from 3 Lots

OUTPUT SWING OVERHEAD vs TEMPERATURE
Average of 30 Units from 3 Lots

BANDWIDTH vs FEEDBACK RESISTANCE

$$
\left(A_{V}=+10\right)
$$

REJECTION RATIOS vs FREQUENCY

OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

SHORT CIRCUIT CURRENT LIMIT vs TEMPERATURE

LARGE SIGNAL PULSE RESPONSE
Vertical Scale: $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} /$ Div.; $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} /$ Div. Horizontal Scale: 50ns/Div.

SMALL SIGNAL PULSE RESPONSE
Vertical Scale: $\mathrm{V}_{\text {IN }}=100 \mathrm{mV} /$ Div.; $\mathrm{V}_{\mathrm{OUT}}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

PROPAGATION DELAY vs TEMPERATURE
Average of 18 Units from 3 Lots

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PROPAGATION DELAY vs SUPPLY VOLTAGE
Average of 18 Units from 3 Lots

DISTORTION vs FREQUENCY

DIFFERENTIAL PHASE vs SUPPLY VOLTAGE
Average of 18 Units from 3 Lots

SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

DIFFERENTIAL GAIN vs SUPPLY VOLTAGE
Average of 18 Units from 3 Lots

SLEW RATE vs TEMPERATURE
Average of 30 Units from 3 Lots

TYPICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, $\mathrm{V}_{\text {DISABLE }}=\mathrm{V}+$, Unless Otherwise Specified

PARAMETERS	CONDITIONS	TEMPERATURE	TYPICAL	DESIGN LIMIT	UNITS
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	2	Table 1	mV
Average Offset Voltage Drift	Versus Temperature	Full	10	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Positive Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	3	Table 1	$\mu \mathrm{A}$
Negative Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	12	Table 1	$\mu \mathrm{A}$
Input Common Mode Range		Full	± 12	Table 1	V
Offset Voltage Adjustment	See Note 4, Table 1	Full	± 40	Table 1	mV
Output Voltage Swing	$\mathrm{V}_{\text {IN }}= \pm 12.8$	$+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 12.7	Table 1	V
	$\mathrm{V}_{\text {IN }}= \pm 12.8$	$-55^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	± 11.8	Table 1	V
Output Current	Implied by $\mathrm{V}_{\text {OUT } / 400 \Omega}$	$+25^{\circ} \mathrm{C}$	31.7	Table 1	mA
Output Short Circuit Current	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	65	Table 1	mA
Quiescent Supply Current	$\mathrm{R}_{\mathrm{L}}=$ Open	Full	7.5	Table 1	mA
Supply Current, Disabled	$\mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}$	Full	5.0	Table 1	mA
Slew Rate	$\mathrm{V}_{\text {IN }}=20 \mathrm{Vp}$-p	$+25^{\circ} \mathrm{C}$	± 800	Table 2	V/us
Overshoot	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$+25^{\circ} \mathrm{C}$	7	Table 3	\%
Input Noise Voltage	$f=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	4.5	8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Positive Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	2.5	4	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Negative Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	25	40	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Differential Gain	$\mathrm{R}_{\mathrm{L}}=150 \Omega$, NTC-7 Composite	$+25^{\circ} \mathrm{C}$	0.025	0.05	\%
Differential Phase	$\mathrm{R}_{\mathrm{L}}=150 \Omega$, NTC-7 Composite	$+25^{\circ} \mathrm{C}$	0.025	0.05	Degrees

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

> For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

