intercil

HCTS4002MS

Pinouts

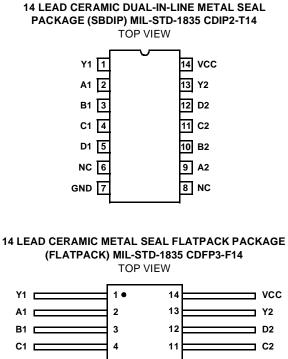
Radiation Hardened Dual 4-Input NOR Gate

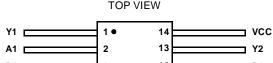
August 1995

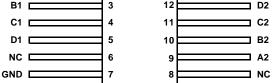
Features

- 3 Micron Radiation Hardened CMOS SOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels li ≤ 5µA at VOL, VOH

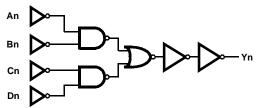
Description


The Intersil HCTS4002MS is a Radiation Hardened Dual 4-Input NOR Gate. A high on any input forces the output to a low state. The HCTS4002MS utilizes advanced CMOS/SOS technology to


achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS4002MS is supplied in a 14 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Ordering Information


PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS4002DMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead SBDIP
HCTS4002KMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead Ceramic Flatpack
HCTS4002D/ Sample	+25°C	Sample	14 Lead SBDIP
HCTS4002K/ Sample	+25°C	Sample	14 Lead Ceramic Flatpack
HCTS4002HMSR	+25°C	Die	Die

Functional Diagram

TRUTH TABLE

	INP	OUTPUTS				
An	Bn	Cn	Dn	Yn		
L	L	L	L	Н		
Н	Х	Х	Х	L		
Х	Н	Х	Х	L		
Х	Х	Н	Х	L		
Х	Х	Х	Н	L		
NOTE: L = Logic Level Low, H = Logic level High, X = Don't Care						

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved

Absolute Maximum Ratings

•	
Supply Voltage (VCC)	٦
Input Voltage Range, All Inputs0.5V to VCC +0.5V	
DC Input Current, Any One Input±10mA	
DC Drain Current, Any One Output±25mA	ľ
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)65°C to +150°C	
Lead Temperature (Soldering 10sec) +265°C	ľ
Junction Temperature (TJ)+175°C	ł
ESD Classification Class 1	

Reliability Information

-		
Thermal Resistance	θ_{JA}	θ _{JC}
SBDIP Package	74°C/W	24°C/W
Ceramic Flatpack Package	116°C/W	30°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.43W
If device power exceeds package dissipat	ion capabili	ty, provide
heat sinking or derate linearly at the following	g rate:	
SBDIP Package	1	3.5mW/ºC
Ceramic Flatpack Package		8.6mW/ºC

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation..

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Operating Temperature Range (T _A)	55°C to +125°C
Input Rise and Fall Times at 4.5V VCC (TR, TF)	500ns Max

Input Low Voltage (VIL). 0.0V to 0.8V Input High Voltage (VIH) VCC/2 to VCC

		(NOTE 1)	GROUPA SUB-		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	10	μΑ
			2, 3	+125°C, -55°C	-	200	μΑ
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	4.8	-	mA
		VOOT = 0.4V, VIE = 0V	2, 3	+125°C, -55°C	4.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIH = 4.5V, VOUT = VCC -0.4V,	1	+25°C	-4.8	-	mA
(000100)		VIL = 0V	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μΑ
Current			2, 3	+125°C, -55°C	-	±5.0	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages reference to device GND.

2. For functional tests VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0".

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS								
			GROUP		LIMITS			
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	UNITS	
Input to Output	TPHL,	VCC = 4.5V	9	+25°C	2	22	ns	
	TPLH		10, 11	+125°C, -55°C	2	25	ns	

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	38	pF
Dissipation			1	+125°C	-	47	pF
Input Capacitance	CIN	VCC = Open, f = 1MHz	1	+25°C	-	10	pF
			1	+125°C	-	10	pF
Output Transition	TTHL	VCC = 4.5V	1	+25°C	-	15	ns
Time	TTLH		1	+125°C	-	22	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.2	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	4.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V or 5.5V, VIH = VCC/2, VIL = 0.8V, IOL = 50µA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V or 5.5V, VIH =VCC/2, VIL = 0.8V, IOH = -50µA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V at 200K RAD, (Note 3)	+25°C	-	-	-
Input to Output	TPHL, TPLH	VCC = 4.5V	+25°C	2	25	ns

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

3. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	3μΑ
IOL/IOH	5	-15% of 0 Hour

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Preburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
Interim Test I (Pos	stburn-In)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test II (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE:

1. Alternate Group A Inspection in accordance with Method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND	RECORD
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

Specifications HCTS4002MS

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

				OSCILLATOR	
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	$\text{VCC}=\text{6V}\pm\text{0.5V}$	50kHz	25kHz
STATIC BURN-IN I TE	EST CONNECTIONS (M	Note 1)			
1, 6, 8, 13	2 - 5, 7, 9 - 12	-	14	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
1, 6, 8, 13	7	-	2 - 5, 9 - 12, 14	-	-
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)					
6, 8	7	1, 13	14	2 - 5, 9 - 12	-

NOTES:

1. Each pin except VCC and GND will have a resistor of $10 k \Omega \pm 5\%$ for static burn-in

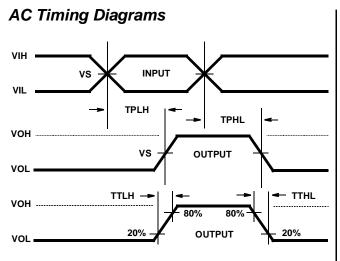
2. Each pin except VCC and GND will have a resistor of 1K $\Omega\pm$ 5% for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
1, 6, 8, 13	7	2 - 5, 9 - 12, 14

NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

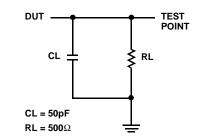
Intersil Space Level	Product Flow - 'MS'
----------------------	---------------------

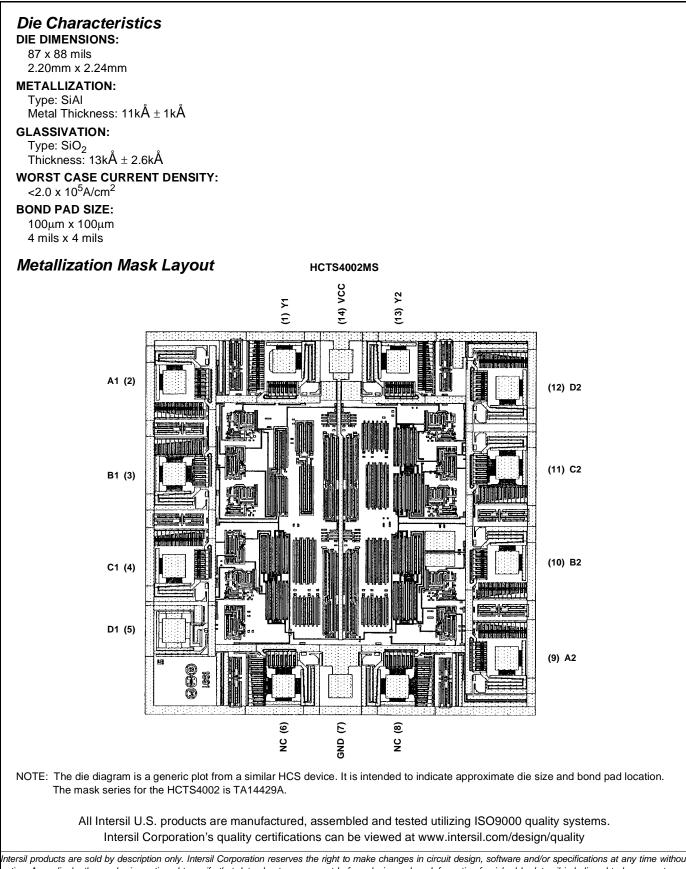

Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects	 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015
 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 	 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1 and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Final Electrical Test 100% Final Electrical Test 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 5005 (Note 4)
	100% Data Package Generation (Note 5)

NOTES:

1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.

- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.


HCTS4002MS



AC VOLTAGE LEVELS

PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

AC Load Circuit

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withou notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may resul from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com