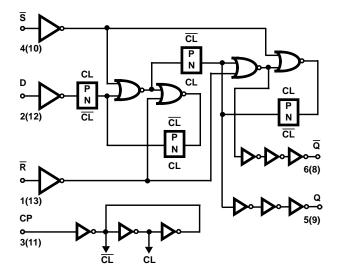


September 1995

HCTS74MS

Radiation Hardened Dual-D Flip-Flop with Set and Reset



Ordering Information

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS74DMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead SBDIP
HCTS74KMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead Ceramic Flatpack
HCTS74D/Sample	+25°C	Sample	14 Lead SBDIP
HCTS74K/Sample	+25°C	Sample	14 Lead Ceramic Flatpack
HCTS74HMSR	+25°C	Die	Die

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

Functional Diagram

TRUTH TABLE

	INP	Ουτι	PUTS		
SET	RESET	СР	D	Q	Q
L	Н	Х	х	Н	L
н	L	Х	х	L	н
L	L	Х	Х	H*	H*
н	Н		Н	Н	L
н	Н		L	L	Н
н	Н	L	х	QŨ	QO

NOTE: L = Logic Level Low, H = Logic Level High, X = Don't Care ____ = Transition from Low to High Level

Q0 = The level of Q before the indicated input conditions were established.

* This configuration is non-stable, that is, it will not persist when set and reset inputs return to their inactive (High) level.

Absolute Maximum Ratings

Reliability Information

Supply Voltage (VCC)0.5V to +7.0V	
Input Voltage Range, All Inputs0.5V to VCC +0.5V	
DC Input Current, Any One Input±10mA	
DC Drain Current, Any One Output±25mA	
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)65°C to +150°C	
Lead Temperature (Soldering 10sec) +265°C	
Junction Temperature (TJ) +175°C	
ESD Classification Class 1	

Thermal Resistance SBDIP Package	θ _{JA} 74°C/W	θ _{JC} 24°C/W
Ceramic Flatpack Package	116°C/W	30°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.43W
If device power exceeds package dissipation	capability, p	rovide heat
sinking or derate linearly at the following rate	:	
SBDIP Package	1	3.5mW/ºC
Ceramic Flatpack Package		8.6mW/ ^o C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Operating Temperature Range (T _A)	55°C to +125°C
Input Rise and Fall Times at VCC = 4.5V (TR, TF) .	. 100ns/V Max.

Input Low Voltage (VIL)	0.0V to 0.8V
Input High Voltage (VIH)	

		(NOTE 1) GROUP		LIN	IITS		
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	МАХ	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	20	μA
			2, 3	+125°C, -55°C	-	400	μA
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	4.8	-	mA
(OIIIK)		VOUT = 0.4V, VIL = 0V	2, 3	+125°C, -55°C	4.0	-	mA
Output Current (Source)	ЮН	VCC = 4.5V, VIH = 4.5V, VOUT = VCC -0.4V,	1	+25°C	-4.8	-	mA
		VIL = 0V	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50µA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50µA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μA
Current			2, 3	+125°C, -55°C	-	±5.0	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages reference to device GND.

2. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

3. Force/Measure functions may be interchanged.

			GROUP		LIN	LIMITS	
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	
CP to Q, \overline{Q}	TPHL	VCC = 4.5V	9	+25°C	2	31	ns
			10, 11	+125°C, -55°C	2	37	ns
	TPLH	VCC = 4.5V	9	+25°C	2	27	ns
			10, 11	+125°C, -55°C	2	31	ns
S to Q	TPLH	VCC = 4.5V	9	+25°C	2	21	ns
			10, 11	+125°C, -55°C	2	24	ns
\overline{S} to \overline{Q}	TPHL	VCC = 4.5V	9	+25°C	2	33	ns
			10, 11	+125°C, -55°C	2	38	ns
R to Q	TPHL	VCC = 4.5V	9	+25°C	2	35	ns
			10, 11	+125°C, -55°C	2	40	ns
\overline{R} to \overline{Q}	TPLH	VCC = 4.5V	9	+25°C	2	29	ns
			10, 11	+125°C, -55°C	2	34	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
Capacitance Power	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	53	pF
Dissipation			1	+125°C, -55°C	-	55	pF
Input Capacitance	CIN	VCC = Open, f = 1MHz	1	+25°C	-	10	pF
			1	+125°C, -55°C	-	10	pF
Output Transition	TTHL	VCC = 4.5V	1	+25°C	-	15	ns
Time	TTLH		1	+125°C, -55°C	-	22	ns
Max Operating	FMAX	VCC = 4.5V	1	+25°C	-	25	MHz
Frequency			1	+125°C, -55°C	-	16	MHz
Data to CP Set-up	TSU	VCC = 4.5V	1	+25°C	11	-	ns
Time			1	+125°C, -55°C	12	-	ns
Hold Time	тн	VCC = 4.5V	1	+25°C	3	-	ns
			1	+125°C, -55°C	3	-	ns
Removal Time	TREM	VCC = 4.5V	1	+25°C	5	-	ns
$\overline{R}, \overline{S}$ to CP			1	+125°C, -55°C	6	-	ns
Pulse Width \overline{R} , \overline{S}	TW	VCC = 4.5V	1	+25°C	14	-	ns
			1	+125°C, -55°C	16	-	ns
Pulse Width CP	TW	VCC = 4.5V	1	+25°C	14	-	ns
			1	+125°C, -55°C	16	-	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

					200K RAD LIMITS	
PARAMETERS	SYMBOL	(NOTES 1, 2) CONDITIONS	TEMPERATURE	MIN	МАХ	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.4	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	4.0	-	mA
Output Current (Source)	ЮН	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V, IOL = 50μA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V, IOH = -50μA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25°C	-	-	-
CP to Q, \overline{Q}	TPHL	VCC = 4.5V	+25°C	2	37	ns
	TPLH	VCC = 4.5V	+25°C	2	31	ns
S to Q	TPLH	VCC = 4.5V	+25°C	2	24	ns
\overline{S} to \overline{Q}	TPHL	VCC = 4.5V	+25°C	2	38	ns
R to Q	TPHL	VCC = 4.5V	+25°C	2	40	ns
\overline{R} to \overline{Q}	TPLH	VCC = 4.5V	+25°C	2	34	ns

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500 Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

3. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	6μΑ
IOL/IOH	5	-15% of 0 Hour

Specifications HCTS74MS

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Preburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
Interim Test I (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
Interim Test II (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11, (Note 2)
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTES:

1. Alternate Group A testing in accordance with method 5005 of MIL-STD-883 may be exercised.

2. Table 5 parameters only.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TE	ST	READ AND RECORD	
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

		1/2 VCC = 3V ± 0.5V		OSCILLATOR	
OPEN	GROUND		VCC = 6V \pm 0.5V	50kHz	25kHz
STATIC BURN	STATIC BURN-IN I TEST CONNECTIONS				
5, 6, 8, 9	1, 2, 3, 4, 7, 10, 11, 12, 13		14		
STATIC BURN	STATIC BURN-IN II TEST CONNECTIONS				
5, 6, 8, 9	7		1, 2, 3, 4, 10, 11, 12, 13, 14		
DYNAMIC BURN-IN TEST CONNECTIONS					
-	7	5, 6, 8, 9	1, 4, 10, 13, 14	3, 11	2, 12

NOTES:

1. Each pin except VCC and GND will have a resistor of 10K $\Omega\pm5\%$ for static burn-in.

2. Each pin except VCC and GND will have a resistor of 1K $\Omega\pm5\%$ for dynamic burn-in.

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
5, 6, 8, 9	7	1, 2, 3, 4, 10, 11, 12, 13, 14

NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

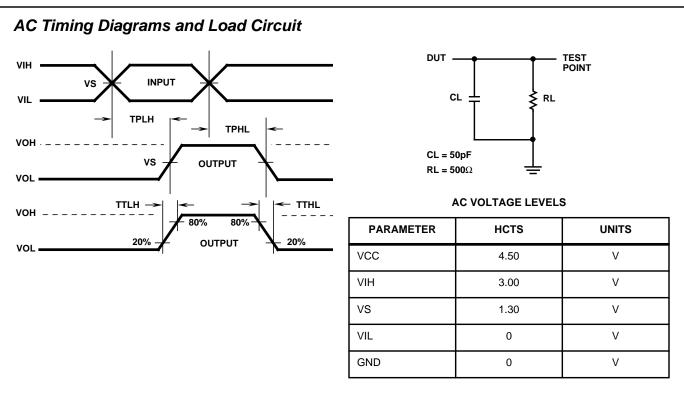
NOTES:

1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.

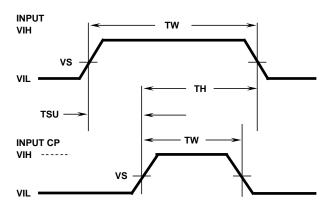
2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.

3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.

4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.


5. Data Package Contents:

• Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).


• Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.

• GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.

- X-Ray report and film. Includes penetrometer measurements.
- Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
- Lot Serial Number Sheet (Good units serial number and lot number).
- Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
- The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

Pulse Width, Setup, Hold Timing Diagram Positive Edge Trigger

TH = HOLD TIME TSU = SETUP TIME TW = PULSE WIDTH

VOLTAGE LEVELS

PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

Die Characteristics

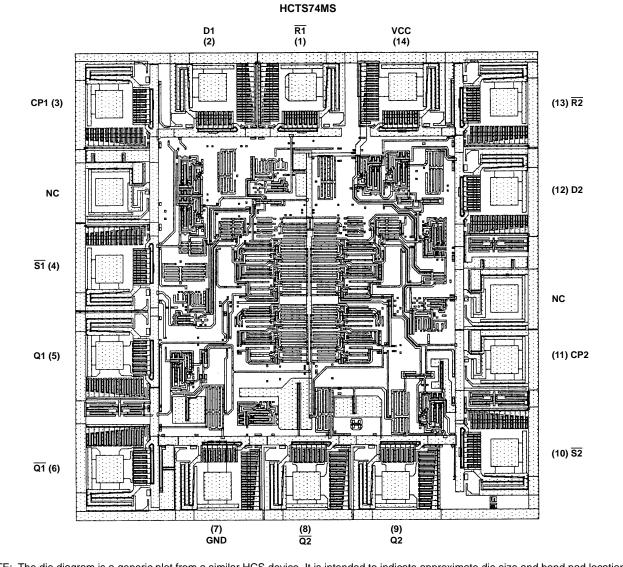
DIE DIMENSIONS:

89 x 88 mils 2.25 x 2.24mm

METALLIZATION:

Type: SiAl Metal Thickness: $11k\dot{A} \pm 1k\dot{A}$

GLASSIVATION:


Type: SiO₂ Thickness: 13kÅ \pm 2.6kÅ

WORST CASE CURRENT DENSITY: <2.0 x 10⁵A/cm²

BOND PAD SIZE:

100μm x 100μm 4 mils x 4 mils

Metallization Mask Layout

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS74 is TA14438A.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com