HD155111F

RF Single-chip Linear IC for PCN Cellular Systems

HITACHI

Description

The HD155111F was developed for PCN (DCS1800) cellular systems, and integrates most of the functions of a transceiver. The HD155111F incorporates the bias circuit for a RF LNA, a 1st mixer, 1st-IF amplifier, 2nd mixer, AGC amplifier and an IQ quadrature demodulator for the receiver, and an IQ quadrature modulator and offset PLL for the transmitter. Also, on chip are the dividers for the 1 st \& 2 nd local oscillator signals and 90° phase splitter. Moreover the HD155111F includes control circuits to implement power saving modes. These functions can operate down to 2.7 V and are housed in a 48-pin LQFP SMD package.

Hence the HD155111F can form a small size transceiver handset for PCN by adding a PLL frequency synthesizer IC, a power amplifier and some external components. See page 7 "Configuration".

The HD155111F is fabricated using a $0.6 \mu \mathrm{~m}$ double-polysilicon Bi-CMOS process.

Functions

Receiver (RX)

- Low Noise Amplifier (LNA) bias circuit
- 1st mixer
- IF amplifier
- 2nd mixer
- Automatic gain control amplifier (AGC)
- IQ demodulator with 90° phase splitter

Transmitter (TX)

- IQ modulator with 90° phase splitter
- Offset PLL
- Down converter
- Phase comparator
- TX VCO driver

Others

- IF dividers
- Power saving circuit
- IFVCO

Features

- Highly integrated RF processing for hand-portables
- Wide operating frequency

RX:
— RF: 1805 to 1880 MHz
— 1st IF: 130 to 300 MHz
— 2nd IF: 26 to 60 MHz
TX:

- RF: 1710 to 1785 MHz
- IF: 120 to 180 MHz
- Offset PLL architecture reduces TX spurious
- Low current consumption $(\mathrm{Vcc}=3 \mathrm{~V})$

RX mode: 42.5 mA Typ (including IFVCO current (2.5 mA Typ)) + LNA transistor current (5.6 mA Typ)
TX mode: 38.0 mA Typ (including IFVCO current (2.5 mA Typ))
Idle mode: $1 \mu \mathrm{~A}$ Typ

- Operating supply voltage:
— Phase comparator and TX VCO driver circuits: 2.7 to 5.25 V
— Other blocks: 2.7 to 3.6 V
- Operating temperature range: -20 to $+75^{\circ} \mathrm{C}$
- 48 pin SMD Low Profile Quad Flat Package (LQFP): FP-48

Pin Arrangement

The HD155111F is housed in a 48-pin LQFP SMD package to which is suitable for applications where space is limited. "Pin Functions" shows the arrangement and roles assigned for each pin of the HD155111F.

Pin Functions

Pin No.	Symbol	Input/ Output	Meaning of symbol	Function
1	POONRX1	Input	POwer ON for RX1	If ' H ', LNA and MIX1 are active. Other receiver blocks don't care.
2	POONRX2	Input	POwer ON for RX2	LNA and MIX1 don't care. If 'H', Other receiver blocks are active.
3	RFOUT	Output	RF signal OUTput	Open collector type output of LNA. The collector of LNA transistor.
4	VCCLNA	Vcc	VCC of LNA block	Power supply of LNA
5	GNDLNA	Gnd	GND of LNA block	Ground of LNA
6	RFIN	Input	RF signal INput	Input of LNA. The base of LNA transistor
7	POONTX	Input	POwer ON for TX	If ' H ', the blocks for transmitter are active. The reciver blocks don't care.
8	VCCPLL	Vcc	VCC of OPLL block	Power supply for offset PLL except phase comparator
9	GNDPLL	Gnd	GND of OPLL block	Ground of offset PLL
10	VCOIN	Input	VCO signal INput	Input of Tx. VCO signal
11	vcccomp	Vcc	VCC of phase COMParator	Power supply for just phase comparator of offset PLL
12	PLLOUT	Output	OPLL OUTput	Current output to control and modulate Tx. VCO This pin should be connected external loop filter.
13	ICURAD	Input	I CURrent ADjust	This pin should be connected an external R to determine charge pump current of phase comparator
14	QINB	Input	Q signal INput Bar	Q negative signal input of IQ quadrature modulator
15	QIN	Input	Q signal INput	Q positive signal input of IQ quadrature modulator
16	IINB	Input	$\underline{\underline{1} \text { signal INput Bar }}$	I negative signal input of IQ quadrature modulator
17	IIN	Input	I signal INput	I positive signal input of IQ quadrature modulator
18	MODB	Output	MODulator output Bar	Negative output of IQ quadrature modulator
19	MOD	Output	MODulator output	Positive output of IQ quadrature modulator
20	VCCIQ	Vcc	VCC of IQ block	Power supply of IQ block
21	IFLO	Input/ Output	IF LOcal signal input/output	IF local signal input to be fed to divider
22	GNDIQ	Gnd	GND of IQ block	Ground of IQ block
23	IFVCOO	Output	IFVCO Output	Emitter of IFVCO transistor
24	IFVCOI	Input	IFVCO Input	Base of IFVCO transistor

Pin Function (cont)

Pin No.	Symbol	Input/ Output	Meaning of symbol	Function
25	QOUTB	Output	Q signal OUTput Bar	Q negative signal output of IQ quadrature demodulator
26	QOUT	Output	Q signal OUTput	Q positive signal output of IQ quadrature demodulator
27	IOUTB	Output	$\underline{1}$ signal OUTput Bar	I negative signal output of IQ quadrature demodulator
28	IOUT	Output	I signal OUTput	I positive signal output of IQ quadrature demodulator
29	VCONT	Input	Voltage of AGC CONTrol	The DC voltage input to control the power gain of AGC
30	GNDDIV	Gnd	GND of DIVider block	Ground of divider to make IF local signals
31	VCCDIV	Vcc	$\underline{\text { VCC of DIVider block }}$	Power supply of divider to make IF local signals
32	AGCOUTB	Output	AGC OUTput Bar	AGC negative signal output to be fed to IQ quadrature demodulator
33	AGCOUT	Output	AGC OUTput	AGC positive signal output to be fed to IQ quadrature demodulator
34	VCCAGC	Vcc	VCC of AGC block	Power supply of AGC
35	GNDAGC	Gnd	GND of AGC block	Ground of AGC
36	MIX2OB	Output	MIX2 Output Bar	2nd mixer (MIX2) negative signal output to be fed to AGC
37	MIX2O	Output	MIX2 Output	2nd mixer (MIX2) positive signal output to be fed to AGC
38	IFINB	Input	1stIF signal INput Bar	IFAMP negative signal input for 1st IF signal
39	IFIN	Input	1stIF signal INput	IFAMP positive signal input for 1st IF signal
40	GNDIF	Gnd	GND of IFMIX2 block	Ground of IFAMP and 2nd mixer (MIX2)
41	VCCIF	Vcc	VCC of IFMIX2 block	Power supply of IFAMP and 2nd mixer (MIX2)
42	MIX1OUT	Output	MIX1 Output	1st mixer (MIX1) positive signal output
43	MIX1OUTB	Output	MIX1 Output Bar	1st mixer (MIX1) negative signal output
44	RFLOIN	Input	RF LOcal signal INput	RF 1st local signal input to be fed to 1 st mixer (MIX1) and the down converter of offset PLL
45	VCCMIX1	Vcc	VCC of MIX1 block	Power supply of 1st mixer (MIX1)
46	GNDMIX1	Gnd	GND of MIX1 block	Ground of 1st mixer (MIX1)
47	MIX1INB	Input	MIX1 Input Bar	1st mixer (MIX1) negative signal input
48	MIX1IN	Input	MIX1 Input	1st mixer (MIX1) positive signal input

Block Diagram

Configuration

- Frequency Plan1

- Frequency Plan2

A GSM Application Example

Functional Operation

The HD155111F has been designed from system stand point and incorporated a large number of the circuit blocks necessary in the design of a digital cellular handset.

Receiver Operation

The HD155111F incorporates a LNA bias circuit for an external RF transistor, whose NF and power gain can be better selected.

This circuit amplifies the RF signal after selection by the antenna filter before the signal enters the first mixer section. The RF signal is combined with a low side local oscillator (LO) signal to generate a wanted first IF signal in the 130 to 300 MHz range. The 1st mixer circuit uses a double-balanced Gilbert cell architecture, which has open collector differential outputs. If, at 225 MHz , a $800 \Omega \mathrm{LC}$ load is connected to the mixer's outputs then a SSB NF of 10 dB with a gain of 8.0 dB is realizable. The corresponding input compression point is -13 dBm , which allows the device to be used within a PCN system.

A filter is used after the 1st mixer to provide image rejection and the conditioned signal is then passed through an intermediate amplifier, before being down converted to a second IF in the range of 26 to 60 MHz .

The second mixer can generate a 45 MHz 2 nd IF, if a 270 MHz 2 nd LO signal is used. The 2 nd LO is obtained by dividing the IFLO signal by 2 . The 2 nd mixer also uses the Gilbert cell architecture, but with internal resistive differential outputs of 300Ω. IF amplifier and second mixer has a SSB NF of 5.6 dB , a power gain of 12 dB and an input compression point of -25 dBm . In order to improve the blocking characteristics of the device an external LC resonator across the differential outputs of the second mixer is recommended.

The signal is then passed to the AGC circuit, which has a dynamic range of more than 80 dB (-42 dB to +55 dB Typ) and is controlled by a DC voltage, which is generated by the microprocessor. This DC control range is from 0.15 V to 2.3 V . The AGC, which is designed for the PCN system, provides a linearity of $\pm 1.0 \mathrm{~dB}$ in any 20 dB window. The outputs of the AGC are $2 \mathrm{k} \Omega$ differential and are connected the external supply via inductors.

The signal is then down converted by a demodulator to I and Q. Internal divider circuits convert the IFLO signal to the same frequency as the 2nd IF before passing this local signal through a phase splitter / shifter in order to generate the in phase and quadrature IQ components. The phase accuracy of the IQ demodulator is $< \pm 1^{\circ}$ and the amplitude mismatch is $< \pm 0.5 \mathrm{~dB}$. In order to accommodate different baseband interfaces the HD155111F IQ differential outputs have a voltage swing of $2.4 \mathrm{Vp}-\mathrm{p}$ and a DC offset of $<60 \mathrm{mV}$ Max. Within each output stage a 2 nd order Butterworth filter ($\mathrm{fc}=210 \mathrm{kHz}$), is used to improve the blocking performance of the device.

In order to allow flexibility in circuit implementation the HD155111F can configured to use either a singleended or balanced external circuitry and components.

Figure 1 LNA Bias Circuit

Transmitter Operation

The transmitter chain converts differential IQ baseband signals to a suitable format for transmission by a power amplifier.

The common mode DC voltage range of the modulator inputs is 0.8 to 1.2 V and they have $2.4 \mathrm{Vp}-\mathrm{p}$ Max differential swing. The modulator circuit uses double-balanced mixers for the I and Q paths. The LO signals are generated by dividing the IFLO signal by 2 and then passing them through a phase splitter / shifter. The IF signals generated are then summed and produce a single modulated IF signal which is amplified and fed into the offset PLL block. Carrier suppression due to the mixer circuit is better than 31 dBc. However, if the common mode DC voltage of the I and Q inputs is adjusted, carrier suppression can be improved better than 40 dBc easily. In addition, upper side-band suppression is better than 35 dBc .

Within the offset PLL block there is a down converter, a phase comparator and a VCO driver. The down converter mixes the 1st LO signal and the TX VCO to create a reference LO signal for use in the offset PLL circuit. The phase comparator and the VCO driver generate an error current, which is proportional to the phase difference between the reference IF and the modulated IF signals. This current is used in a 2 nd order loop filter to generate a voltage, which in turn modulates the TX VCO. In order to optimize the PLL loop gain, the error current value can be modified by changing the value of an external resistor - ICURAD. In order to accommodate a range of TX VCO, the offset PLL circuit has been designed to operate with a supply voltage of up to 5.25 V .

Operating Modes

The HD155111F has the necessary control circuitry to implement the necessary states within the PCN system. Also provided is a power save mode which reduces the current consumption of the device by powering down unnecessary function blocks. Three pins are assigned for mode control, POONRX1, POONRX2 and POONTX. Table 1 shows the relationship between the pins and the required operating mode. Control of these pins are by the system controller.

As per PCN requirements the TX and RX sections are not on at the same time. For the receiver there is a calibration mode for which the LNA bias circuit and 1st mixer are switched off. During this period the gain of the AGC can be adjusted. Also the DC offsets of the IQ demodulator are measured and subsequently canceled.

In order to change between the RX and TX modes a state called "warm-up" is used to ensure that the LO

HD155111F

Power saving is implemented through use of the idle mode. All function blocks of the HD155111F are switched off until such time as the system controller commends the device to power up again.

Table 1 Operating Modes with Power Saving

		Receive (Rx)	Calibrate (Cal)	Warm-up (Lo-ON)	Transmit (Tx)	Idle (PS)
Mode switch	POONRX1 (pin 1)	H	L	L	L	H
	POONRX2 (pin 2)	H	H	L	L	L
	POONTX (pin 7)	L	L	L	H	Don't care
HD155111F circuit status	LNA bias	ON	OFF	OFF	OFF	OFF
	1st mixer	ON	OFF	OFF	OFF	OFF
	IF AMP	ON	ON	OFF	OFF	OFF
	2nd mixer	ON	ON	OFF	OFF	OFF
	AGC	ON	ON	OFF	OFF	OFF
	IO demodulator	ON	ON	OFF	OFF	OFF
	Divider (Rx.)	ON	ON	OFF	OFF	OFF
	Divider (Tx.)	OFF	OFF	OFF	ON	OFF
	IO modulator	OFF	OFF	OFF	ON	OFF
	Offset PLL	OFF	OFF	OFF	ON	OFF
	RF 1st local buffer	ON	ON	ON	ON	OFF
	IF local buffer	ON	ON	ON	ON	OFF
	IFVCO	ON	ON	ON	ON	OFF
	Total current	42.5 mA Typ	32 mA Typ	10.5 mA Typ	38 mA Typ	$1 \mu \mathrm{~A}$ Typ

IFVCO Operation

The HD155111F incorporates an IFVCO circuit. The IFVCO circuit consists of an IFVCO transistor and a bias circuit for it, whose current are 2.0 mA and 0.5 mA respectively. If an internal IFVCO is used, treat pin 23 (IFVCOO), pin 24 (IFVCOI) and pin 21 (IFLO) as shown figure 3-(a).

Using an external IFVCO, pin 23 (IFVCOO) and pin 24 (IFVCOI) cannot be connected any pattern and component, and any component to feed direct current must be also removed from pin 21 (IFLO).

If pin 23 (IFVCOO), pin 24 (IFVCOI) and pin 21 (IFLO) are treated as shown figure 3-(b), current consumption will decrease 2.0 mA .

Moreover, there is the other external IFVCO solution using only an IFVCO bias circuit as shown figure 3(c). The IFVCO bias circuit has an internal power save function. Therefore, if figure 3-(c) is adopted, an internal power save function can be used as well as figure 3-(a).

Figure 3 IFVCO Circuits

Absolute Maximum Ratings

Any stresses in excess of the absolute maximum ratings can cause permanent damage to the HD155101BF.

Item	Symbol	Rating	Unit
Power supply voltage (VCC)	VCC	-0.3 to +4.0	V
Power supply voltage (VCCCOMP)	VCCCOMP	-0.3 to +5.5	V
Pin voltage	V_{T}	-0.3 to VCC $+0.3(6.0 \mathrm{Max})$	V
Maximum power dissipation	P_{T}	400	mW
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Specifications

Item	Symbol	Min	Typ	Max	Unit	Test Conditions	Applicable pins	Note
Power supply voltage (1)	V_{CC}	2.7	3.0	3.6	V		$\begin{aligned} & 4,8,20,31, \\ & 34,41,45 \end{aligned}$	
Power supply voltage (2)	$\mathrm{V}_{\text {СссомP }}$	2.7	3.0	5.25	V		11	
Power supply current (Rx.)	$\mathrm{I}_{\mathrm{CC}(\mathrm{Rx} .)}$	-	42.5	60.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CccomP}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4,8,20,31 \\ & 34,41,45,11 \end{aligned}$	
Power supply current (Tx.)	$\mathrm{I}_{\mathrm{CC}(\mathrm{T} .)}$	-	38.0	55.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCCOMP}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4,8,20,31 \\ & 34,41,45,11 \end{aligned}$	
Power supply current (Lo-ON)	$\mathrm{I}_{\text {CC(Lo-ON })}$	-	10.5	15.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCCOMP}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4,8,20,31 \\ & 34,41,45,11 \end{aligned}$	
Power saving mode supply current	$\mathrm{I}_{\mathrm{CC}(\mathrm{PS})}$	-	1.0	10.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCCOMP}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4,8,20,31 \\ & 34,41,45,11 \end{aligned}$	
Power up time (Rx.)	$t u_{(\text {Rx. })}$	-	1.5	(5.0)	$\mu \mathrm{sec}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCCOMP}}=3.0 \mathrm{~V} \end{aligned}$		from PS mode
Power up time (Tx.)	$\operatorname{tup}_{(T \mathrm{Tx} .)}$	-	0.2	(0.5)	$\mu \mathrm{sec}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCCOMP}}=3.0 \mathrm{~V} \end{aligned}$		from PS mode
Power on control voltage range (Rx1, Rx2, Tx)	Vthon ${ }_{\text {RX1 }}$ Vthon $\mathrm{RX}_{\mathrm{R} 2}$ Vthon ${ }_{\text {TX }}$	2.3	-	-	V	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 2 \\ & 7 \end{aligned}$	
Power off control voltage range (RX1, Rx2, Tx)	Vthoff ${ }_{\text {RX1 }}$ Vthoff ${ }_{\text {RX2 }}$ Vthoff ${ }_{\text {TX }}$	-	-	0.8	V	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 2 \\ & 7 \end{aligned}$	
I/Q common-mode output voltage	$\begin{aligned} & \mathrm{V}_{\text {IOcom }} / \\ & \mathrm{V}_{\text {QOcom }} \\ & \hline \end{aligned}$	1.1	1.3	1.5	V	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	$\begin{aligned} & 25,26 \\ & 27,28 \end{aligned}$	
I/Q differential output swing	$\begin{aligned} & \mathrm{V}_{\text {IOsw }} / \\ & \mathrm{V}_{\text {QOsw }} \end{aligned}$	2.4	3.0	-	Vp-p	$\begin{aligned} & V_{\text {CC }}=3.0 \mathrm{~V} \\ & V_{\text {IOUT }}-V_{\text {IOUTB }} \\ & V_{\text {QOUT }}-V_{\text {QOUTB }} \end{aligned}$	$\begin{aligned} & 25,26 \\ & 27,28 \end{aligned}$	
I/Q output offset voltage	$V_{\text {IOoffsel }}$ $\mathrm{V}_{\text {QOoffset }}$	-60	0	+60	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IOUTDC }}-\mathrm{V}_{\text {IOUTBDC }} \\ & \mathrm{V}_{\text {QOUTDC }}-\mathrm{V}_{\text {QOUTBDC }} \end{aligned}$	$\begin{aligned} & 25,26 \\ & 27,28 \end{aligned}$	
I/Q common-mode input voltage	$\begin{aligned} & \mathrm{V}_{\text {Ilcom }} / \\ & \mathrm{V}_{\text {Qlcom }} \end{aligned}$	(0.8)	1.0	(1.2)	V	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$\begin{aligned} & 14,15 \\ & 16,17 \end{aligned}$	
I/Q differential input swing	$\begin{aligned} & \mathrm{V}_{\text {Ilsw }} / \\ & \mathrm{V}_{\mathrm{Qlsw}} \end{aligned}$	-	2.0	(2.4)	Vp-p	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{IINB}} \\ & \mathrm{~V}_{\mathrm{QIN}}-\mathrm{V}_{\mathrm{QINB}} \end{aligned}$	$\begin{aligned} & 14,15 \\ & 16,17 \end{aligned}$	

Note: () : These data are actual spread, not guaranteed.

Block Specifications

- Specifications of BRIGHT LNA Item	Min	Typ	Max	Unit	Test Conditions
Frequency (RF)	1805	1840	1880	MHz	
Power gain	-	13.0	-	dB	$\mathrm{RF}=1840 \mathrm{MHz}, \mathrm{Pin}=-50 \mathrm{dBm}$
Noise figure	-	2.0	-	dB	$\mathrm{RF}=1840 \mathrm{MHz}$
i/p IP3	-	-0.5	-	dBm	$\mathrm{RF} 1=1840.8 \mathrm{MHz}, \mathrm{RF} 2=1841.6 \mathrm{MHz}$
o/p IP3	-	12.5	-	dBm	$\mathrm{RF} 1=1840.8 \mathrm{MHz}, \mathrm{RF} 2=1841.6 \mathrm{MHz}$
i/p CP	-	-10.5	-	dBm	$\mathrm{RF}=1840 \mathrm{MHz}$
o/p CP	-	1.4	-	dBm	$\mathrm{RF}=1840 \mathrm{MHz}$
Load Z	-	50	-	Ω	50Ω Typ
i/p Z	-	50	-	Ω	50Ω Typ
i/p VSWR	-	1.5	-		$\mathrm{RF}=1840 \mathrm{MHz}, 50 \Omega$
o/p VSWR	-	1.5	-		$\mathrm{RF}=1840 \mathrm{MHz}, 50 \Omega$
I_{cc} @LNA Trs.	4.7	5.6	6.8	mA	Only Trs. current

Note: These AC characteristics are shown for reference only and do not form part of the HD155111F component specification.

- Specifications of BRIGHT Mixer 1 (Output Load $=400 \Omega+400 \Omega$ balanced)

Item	Min	Typ	Max	Unit	Test Conditions
Frequency (RF)	1805	1840	1880	MHz	
Frequency (LO)	1505	1617	1750	MHz	
Frequency (IF)	(130)	225	(300)	MHz	
RFLO input level	-10	-	-	dBm	
Conversion gain	5.5	8.0	10.0	dB	$\mathrm{RF}=1840 \mathrm{MHz} / \mathrm{Pin}=-50 \mathrm{dBm}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{IF}=225 \mathrm{MHz}$
Noise figure	(7.0)	9.0	(11.0)	dB	$\mathrm{RF}=1840 \mathrm{MHz}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{IF}=225 \mathrm{MHz}$
i/p IP3	(-8.0)	-5.0	(-2.5)	dBm	$\mathrm{RF} 1=1840.8 \mathrm{MHz}, \mathrm{RF} 2=1841.6 \mathrm{MHz}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}$
o/p IP3	(-2.0)	3.0	(7.0)	dBm	$\mathrm{RF} 1=1840.8 \mathrm{MHz}, \mathrm{RF} 2=1841.6 \mathrm{MHz}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}$
i/p CP	-16.5	-13.5	(-11.0)	dBm	$\mathrm{RF}=1840 \mathrm{MHz}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{IF}=225 \mathrm{MHz}$
o/p CP	(-11.5)	-6.5	(-2.5)	dBm	$\mathrm{RF}=1840 \mathrm{MHz}$, $\mathrm{LO}=1615 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{IF}=225 \mathrm{MHz}$
RF i/p VSWR	-	1.5	(2.0)		$\mathrm{RF}=1840 \mathrm{MHz}, 50 \Omega$
LO i/p VSWR	-	1.5	(2.0)		$\mathrm{RF}=1615 \mathrm{MHz}, 50 \Omega$

- Specifications of BRIGHT IFAmp + Mixer 2

Item	Min	Typ	Max	Unit	Test Conditions
Input frequency (IF1)	(130)	225	(300)	MHz	
Frequency (LO2)	(156)	270	(360)	MHz	$\mathrm{LO} 2=\mathrm{IFLO} / 2$
Output frequency (IF2)	(26)	45	(60)	MHz	
IFLO input level	-10	-	-	dBm	
Conversion gain	9.0	12.0	14.5	dB	$\begin{aligned} & \mathrm{IF} 1=225 \mathrm{MHz} / \text { Pin }=-40 \mathrm{dBm}, \\ & \text { IFLO }=540 \mathrm{MHz} / \text { Pin }=-10 \mathrm{dBm}, \mathrm{IF} 2=45 \mathrm{MHz} \end{aligned}$
Noise figure	(4.5)	5.6	(7.0)	dB	$\begin{aligned} & \text { IF1 }=225 \mathrm{MHz}, \\ & \text { IFLO }=540 \mathrm{MHz} / \text { Pin }=-10 \mathrm{dBm}, \mathrm{IF} 2=45 \mathrm{MHz} \end{aligned}$
i/p IP3	-	-16.0	-	dBm	$\begin{aligned} & \mathrm{IF} 11=225.8 \mathrm{MHz}, \mathrm{IF} 2=226.6 \mathrm{MHz}, \\ & \mathrm{IFLO}=540 \mathrm{MHz} / \mathrm{Pin}=-10 \mathrm{dBm} \end{aligned}$
o/p IP3	-	-4.0	-	dBm	$\begin{aligned} & \text { IF11 }=225.8 \mathrm{MHz}, \text { IF2 }=226.6 \mathrm{MHz}, \\ & \text { IFLO }=540 \mathrm{MHz} / \text { Pin }=-10 \mathrm{dBm} \end{aligned}$
i/p CP	-27.5	-25	(-23.0)	dBm	$\begin{aligned} & \mathrm{IF} 1=225 \mathrm{MHz} \\ & \mathrm{IFLO}=540 \mathrm{MHz} / \text { Pin }=-10 \mathrm{dBm}, \mathrm{IF} 2=45 \mathrm{MHz} \end{aligned}$
o/p CP	(-18.0)	-14.0	(-11.0)	dBm	$\begin{aligned} & \text { IF1 }=225 \mathrm{MHz}, \\ & \text { IFLO }=540 \mathrm{MHz} / \text { Pin }=-10 \mathrm{dBm}, \mathrm{IF} 2=45 \mathrm{MHz} \end{aligned}$
Isolation	-	60	-	dB	Between mixer 1 outputs and IFAmp inputs

Note: () : These data are actual spread, not guaranteed.

- Specifications of BRIGHT AGC

Item	Min	Typ	Max	Unit	Test Conditions
Input frequency	(26)	45	(60)	MHz	
Control voltage range	0.15	-	2.3	V	
Gain range	89	98	107	dB	Gain 1 - Gain 3
Gain linearity	(-1.0)	-	(1.0)	dB	in any 20dB window
Gain 1	45	55	65	dB	Vcont $=2.3 \mathrm{~V}$
Gain 2	13	23	33	dB	Vcont $=1.5 \mathrm{~V}$
Gain 3	-55	-40	-35	dB	Vcont $=0.15 \mathrm{~V}$
i/p CP 1	(-64)	-59	-	dBm	Gain $=50 \mathrm{~dB}$
i/p CP 2	(-34)	-29	-	dBm	Gain $=10 \mathrm{~dB}$
i/p CP 3	(-22)	-17	-	dBm	Gain $=-30 \mathrm{~dB}$
N					

Note: () : These data are actual spread, not guaranteed.

- Specifications of BRIGHT IQ Demodulator

Item	Min	Typ	Max	Unit	Test Conditions			
Power gain	-0.5	1.4	3.5	dB	$\begin{aligned} & \text { IF2 }=45 \mathrm{MHz}, \text { Pin }=-25 \mathrm{dBm} \text {, Rout }=10 \mathrm{k} \Omega \text {, } \\ & \text { IFLO }=540 \mathrm{MHz}, \operatorname{Pin}=-10 \mathrm{dBm} \end{aligned}$			
i/p CP	(-17.5)	-16.0	(-14.0)	dBm	$\begin{aligned} & \text { IF2 }=45 \mathrm{MHz} \text {, Baseband }=67.7 \mathrm{kHz} \text {, } \\ & \text { IFLO }=540 \mathrm{MHz}, \text { Pin }=-10 \mathrm{dBm} \end{aligned}$			
o/p CP	(-19.0)	-15.6	(-12.0)	dBm	$\begin{aligned} & \text { IF2 }=45 \mathrm{MHz} \text {, Baseband }=67.7 \mathrm{kHz}, \\ & \text { IFLO }=540 \mathrm{MHz}, \text { Pin }=-10 \mathrm{dBm} \end{aligned}$			
IQ phase accuracy	-1.0	0	1.0	deg.	Baseband $=67.7 \mathrm{kHz}$			
IQ amplitude mismatch	(-0.5)	0.1	(0.5)	dB	Baseband $=67.7 \mathrm{kHz}$			
Output DC offset voltage	-60	0	60	mV	\|IOUT - IOUTB	and	QOUT - QOUTB	
IQ differential output swing	2.4	3.0	-	Vp-p	$\begin{aligned} & \text { Baseband }=67.7 \mathrm{kHz} \\ & \text { \|IOUT - IOUTB\| and \|QOUT - QOUTB\| } \end{aligned}$			
I/Q common mode output voltage	1.1	1.3	1.5	V	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$			

Note: () : These data are actual spread, not guaranteed.

- Specifications of BRIGHT IQ Modulator and Offset PLL

Item	Min	Typ	Max	Unit	Test Conditions (Loop bandwidth $=1.4 \mathrm{MHz}$)			
Frequency (RF)	1710	1747	1785	MHz				
Frequency (LO)	1530	1612	1665	MHz				
Frequency (IF)	(120)	135	(180)	MHz				
Power up time	-	0.3	(0.5)	$\mu \mathrm{sec}$	from PS mode			
Lock up time	-	20	(80)	$\mu \mathrm{sec}$	from PS mode to 1880 MHz			
IFLO input level	-10	-	-	dBm				
VCOIN input level	-10	-	-	dBm				
Carrier suppression ratio	31	40	-	dBc	All '1' GMSK (Baseband $=67.7 \mathrm{kHz}$)			
Upper side-band suppression ratio	35	45	-	dBc	I / Q differential input swing $=2.0 \mathrm{Vp}-\mathrm{p}$ I / Q common mode input voltage $=1.0 \mathrm{~V}$			
Phase accuracy	-	0.98	(2.5)	deg. rms	200kHz Bandwidth			
(PN9, GMSK)	-	2.74	(6.0)	deg. peak	200kHz Bandwidth			
Modulation spurious	-	-36.0	(-33.0)	dBc	200 kHz offset / 30kHz Bandwidth			
(PN9, GMSK)	-	-68.5	(-63.0)	dBc	400 kHz offset / 30kHz Bandwidth			
	-	-73.0	(-63.0)	dBc	600 kHz to 1.8 MHz offset / 30kHz Bandwidth			
	-	-73.5	(-66.0)	dBc	1.8 MHz to 3 MHz offset/ 100 kHz Bandwidth			
	-	-75.5	(-68.0)	dBc	3 MHz to 6MHz offset / 100kHz Bandwidth			
	-	-77.0	(-74.0)	dBc	6 MHz upwards offset / 100kHz Bandwidth			
Tx noise in RX band	-	-156	(-153)	$\mathrm{dBc} / \mathrm{Hz}$	1805 MHz to 20 MHz up from Tx band			
	-	-162	(-153)	$\mathrm{dBc} / \mathrm{Hz}$	1850 MHz to 65 MHz up from Tx band			
Isolation of the 1st local input to TXVCO input	(40)	43	-	dB				
IQ differential input swing	-	2.0	(2.4)	Vp-p	\|IIN - IINB	and	QIN - QINB	
I/Q common mode input voltage	(0.8)	1.0	(1.2)	V				

Note: () : These data are actual spread, not guaranteed.

Test Circuit

Measurement Results

LNA Measurement Results (for reference only)

Figure 4 Evaluation Circuit for LNA

Figure 5 Gain, NF, ICP vs. Frequency

Figure 6 Gain, Pout vs. Pin

Figure 7 Gain vs. Supply Voltage

Figure 8 NF vs. Supply Voltage

Figure 9 ICP vs. Supply Voltage

Figure 10 LNA Transistor Current vs. Supply Voltage

1st Mixer Measurement Results

Conditions:
Vcc $=3.0 \mathrm{~V}$
POONRX1 (pin 1) $=3.0 \mathrm{~V}$
POONRX2 (pin 2) $=3.0 \mathrm{~V}$
POONTX (pin 7) $=0 \mathrm{~V}$

Figure 11 Evaluation Circuit for 1st Mixer

Figure 12 Gain, NF, ICP vs. Frequency

Figure 13 Gain, Pout vs. Pin

Figure 14 CG, NF vs. Local Input Power

Figure 15 Output Frequency Characteristics

Figure 16 Gain vs. Supply Voltage

Figure 17 NF(SSB) vs. Supply Voltage

Figure 18 ICP vs. Supply Voltage

IF AMP + 2nd Mixer Measurement Results

Figure 19 Evaluation Circuit for IF AMP + 2nd Mixer

Figure 20 Input-Output Characteristics, 1dB-Compression Point

Figure 21 Intermodulation 3rd Characteristics

Figure 22 C.Gain vs. Local in Power

Figure 23 C.Gain, NF SSB vs. Supply Voltage

Figure 24 ICP vs. Temperature

AGC Measurement Results

Figure 25 Evaluation Circuit for the AGC \& Power On Control Blocks

Figure 26 Power Gain vs. Vcont Voltage

Figure 27 Power Gain vs. Frequency

Figure 28 Noise Figure(NF) vs. Power Gain(Gp)

Figure 29 Input Compression Point(ICP) vs. Power Gain(Gp)

Figure 30 Power Gain(Gp) vs. Supply Voltage(Vcc)

IQ Demodulator Measurement Results

Figure 31 Evaluation Circuit for the I\&Q Demodulator Block

Figure 32 Input-Output Characteristics

Figure 33 Input-Output Characteristics

Figure 34 Inter Modulation 3rd Characteristics

Rejection	spec.(Min)	lout	Qout
$@ 200 \mathrm{k}$	-0.3 dB	-2.6 dB	-2.4 dB
$@ 400 \mathrm{k}$	-4.0 dB	-11.5 dB	-11.2 dB
$@ 600 \mathrm{k}$	-9.4 dB	-21.3 dB	-21.1 dB
$@ 800 \mathrm{k}$	-14.0 dB	-29.0 dB	-28.7 dB
$@ 1600 \mathrm{k}$	-25.9 dB	-43.3 dB	-43.0 dB
$@ 3000 \mathrm{k}$	-36.8 dB	-42.2 dB	-42.0 dB
$@ 20000 \mathrm{k}$	-50.0 dB	-54.7 dB	-56.1 dB

Figure 36 Demodulator Output Waveforms (67.7 kHz) at Vcc $=\mathbf{3 . 0} \mathrm{V}, \mathbf{T a}=25^{\circ} \mathrm{C}$

Transmitter Measurement Results

Figure 37 Evaluation Circuit for the Upconverter (I\&Q Modulator and Offset PLL Block)

Transmitter Measurement Results (1) $\left(\mathrm{R}_{\text {ICURAD }}=22 \mathrm{k} \Omega\right.$ and IFLO generated by signal generator)

Figure 39 Evaluation Circuit Using Signal Generator for the I\&Q Modulator and Offset PLL
Table 2 Measurement Results Using SG $\left(\mathrm{R}_{\text {ICURAD }}=22 \mathrm{k} \Omega\right.$, IFLO generated by signal generator $)$

Item		Spec.	Measured1	Measured2	Measured3	Unit
Measured frequency			1710	1747	1785	MHz
200 kHz offset		≤-33	-36.54	-36.25	-36.42	dBc
400 kHz offset		≤-63	-67.16	-67.28	-67.43	dBc
600 kHz to 1.8 MHz offset		≤-63	-71.44	-71.48	-71.67	dBc
1.8 MHz to 3 MHz offset		≤-66	-73.32	-73.33	-73.44	dBc
3 MHz to 6 MHz offset		≤-68	-75.32	-75.09	-75.20	dBC
6 MHz upwards offset		≤-74	-76.01	-75.95	-75.98	dBC
Carrier suppression		≥ 31	45.13	45.13	45.13	dBc
Side band suppression		≥ 35	41.89	41.93	41.93	dBc
Phase accuracy	PN9	≤ 2.5	0.95	0.96	0.96	deg. rms
	PN9	≤ 6.0	2.49	2.42	2.39	deg. peak
	All ' 1 '	≤ 2.5	0.81	0.80	0.80	deg. rms
	All ' 1 '	≤ 6.0	1.97	1.94	1.95	deg. peak

a-1. Spectrum1(1710MHz,PN9)

b-1. Spectrum1 (1747MHz,PN9)

c-1. Spectrum1(1785MHz,PN9)

a-2. Spectrum2(1710MHz,PN9)

b-2. Spectrum2(1747MHz,PN9)

c-2. Spectrum2(1785MHz,PN9)

Figure 40 GMSK Modulated Transmitter Output Spectrum ($1710 \mathrm{MHz}, 1747 \mathrm{MHz}, 1785 \mathrm{MHz}$)

Figure 41 GMSK Modulated Transmitter Output Spectrum vs. Temperature

The Acquisition response of OPLL using $22 \mathrm{k} \Omega$ icurad is shown below. The control voltage of the VCO was observed by the digital storage oscilloscope.

Figure 42 Acquisition Time (Lock Up Time)

Package Dimesions

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor \& IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/

Europe Asia (Singapore) Asia (Taiwan) Asia (HongKong) Japan
http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/indēx.htm http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 2000 Sierra Point Parkway Brisbane, CA 94005-1897 Tel: <1> (800) 285-1601 Fax: <1> (303) 297-0447

Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany
Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9293000 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom

Hitachi Asia Pte. Ltd. 16 Collyer Quay \#20-00 Hitachi Tower Singapore 049318 Tel: 535-2100

