PRELIMINARY

May 1999

Features

- RF Frequency Range. 869MHz to 895MHz
- IF Operation . 10MHz to 100MHz
- LNA Gain. .16 dB
- LNA NF \qquad 2.3 dB
- Mixer Gain. 16dB
- Mixer NF .11dB
- Single Supply Battery Operation 2.7V to 3.3V
- Power Enable/Disable Control
- PIN Diode Attenuator DC Control

Applications

- IS95A CDMA/AMPS Dual Mode Handsets
- Wideband CDMA Handsets
- CDMA/TDMA Packet Protocol Radios
- Full Duplex Transceivers
- Portable Battery Powered Equipment

Description

The HFA3665 is a monolithic bipolar downconverter for CDMA/AMPS cellular applications. Manufactured in the Intersil UHF1X process, the device consists of a low noise cascode amplifier, a double balanced downconversion mixer and a pair of linearized and temperature compensated PIN diode biasing current sources for external RF AGC applications. In addition, the device offers two independent and selectable differential mixer IF output ports to be used with dual mode IF filters and requires low drive levels from the local oscillator. The HFA3665 is one of the four chips in the PRISM ${ }^{\text {TM }}$ chip set and is housed in a small outline 28 lead SSOP package ideally suited for cellular handset applications.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HFA3665IA	-40 to 85	28 Ld SSOP	M28.15
HFA3665IA96	-40 to 85	Tape and Reel	

Block Diagram

PRISM $^{\top M}$ and the PRISM $^{\text {™ }}$ logo are trademarks of Intersil Corporation.

Pin Descriptions

PIN NUMBER	NAME	DESCRIPTION
1	V_{CC}	LNA and PIN diode bias control Power Supply.Use high quality RF decoupling capacitors at the pin.
2	AGC_CTRL	AGC control current input pin. Requires a $9.53 \mathrm{~K} 1 \%$ resistor for scale factor and temperature compensation of the current sources.
3	PIN_O_IBIAS1	Current output for a PIN diode bias control. Use a 2200pF filter capacitor to ground.
4	GND	LNA bias ground return.
5,6	LNA_OUT	LNA open collector output. This pins are internally bonded to the same device output.
7, 8	GND	LNA RF ground return. Degeneration (inductance) can be added to this pin.
9	LNA_IN	LNA input.
10	PIN_O_IBIAS2	Second current output for PIN diode bias control. Use a 2200pF filter capacitor to ground.
11	PIN_I_GND	PIN diode bias control ground return.
12	RX_PE	Power enable control input. HIGH for normal operation. LOW for power down.
13	R_REF	Bias setting resistor. $523 \Omega 1 \%$ for optimum performance and parameter distribution.
14	BIAS_GND	Reference circuit ground return.
15	BIAS_V ${ }_{\text {cC }}$	Reference circuit Power Supply. Use high quality RF decoupling capacitors right at the pin.
16	FM_OUT+	Positive IF FM output. Open collector PNP. Requires a DC return to ground.
17	FM_OUT-	Negative IF FM output. Open collector PNP. Requires a DC return to ground.
18	CDMA_OUT+	Positive IF CDMA output. Open collector PNP. Requires a DC return to ground.
19	CDMA_OUT-	Negative IF CDMA output. Open collector PNP. Requires a DC return to ground.
20	LO_IN	Mixer Local Oscillator input. Requires AC coupling and directly matches to 50Ω.
21	LO_RET	Mixer Local Oscillator complementary input. Requires a bypass capacitor to ground as a return reference.
22	MIX_GND	Mixer ground return.
23	RF_RET	MIxer RF port complementary input. Requires a bypass capacitor to ground as a return reference.
24	RF_IN	Mixer RF input. Requires AC coupling and a match network to 50Ω.
25	MIX_IND	Mixer common mode bias inductor. Use a RF choke to ground with high impedance at 900 MHz . Low loss inductors with parallel resonance close to 900 MHz are ideal.
26, 28	MIX_V ${ }_{\text {cc }}$	Mixer Power Supply Pins.Use high quality RF decoupling capacitors at each one of the pins.
27	SEL	Selects the CDMA or the FM output IF amplifier. HIGH selects the CDMA amplifier. LOW the FM amplifier output.

Absolute Maximum Ratings
Supply Voltage . -0.3 to 3.6 V
Voltage on Any Other Pin except 5 and $6(6.0 \mathrm{~V})$. -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Operating Conditions

Supply Voltage Range
.... .2.7V to 3.3V
Temperature Range
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
SSOP Package	88
Maximum Junction Temperature (Plastic Package)	. $150^{\circ} \mathrm{C}$
Maximum Temperature Range	$\leq T_{A} \leq 85^{\circ} \mathrm{C}$
Maximum Storage Temperature Range -65	$\leq T_{A} \leq 150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) . . .	$\therefore 300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETER	TEST CONDITION	(NOTE 2) TEST LEVEL	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS

LNA SPECIFICATIONS AT 885MHz, $\mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 0 V}, \mathrm{VLNA}=3.0 \mathrm{~V}$ unless otherwise specified (Test schematics as in page 5)

RF Frequency Range	Output Match net.	B	25	869	-	895	MHz
Power Gain	-30dBm input	A	25	14	16.0	17.5	dB
IP31, Input referenced 3rd Order Intercept	$\mathrm{VLNA}=3.0 \mathrm{~V}$	A	25	-	+2	-	dBm
	$\mathrm{VLNA}=3.6 \mathrm{~V}$	A	25	-	+6	-	dBm
	$\mathrm{VLNA}=5.0 \mathrm{~V}$	A	25	-	+7.5	-	dBm
IP1dB, Input Referenced Compression Point	$\mathrm{VLNA}=3.6 \mathrm{~V}$	A	25	-	-7	-	dBm
Noise Figure		B	25	-	2.3	-	dB
Input VSWR		A	25	-	2.2:1	2.5:1	-
Output VSWR	Output network as in the Apps. diagram	A	25	-	1.6:1	2.0:1	-

MIXER SPECIFICATIONS AT -3dBm LO at 970MHz AND IF of 85MHz

RF Frequency Range (Typical)		B	25	869	-	895	MHz
IF Frequency Range		B	25	10	85	100	MHz
LO Frequency Range (Typical)		B	25	954	-	980	MHz
Power Conversion Gain	Note 3	A	25	15.1	16.7	18.3	dB
Voltage Conversion Gain	Differential IF output load $=2.95 \mathrm{~K}$	B	25	-	34.4	-	dB
Gain Flatness Across the RF Freq. Range		B	25	-	-	0.6	dB
Noise Figure, SSB	Note 3	B	25	-	10.6	11.4	dB
IP3I, Input Referenced 3rd Order Intercept		A	25	0	2.6	-	dBm
IP1dB, Input Referenced Compression Point		A	25	-	-10	-	dBm
LO Drive Level		A	25	-6	-3	0	dBm
LO to IF Isolation		A	25	-	30	-	
LO to RF Isolation		A	25	20	32	-	dB
RF VSWR	Input network as in the Apps diagram	A	25	-	1.6:1	2:1	-

Electrical Specifications (Continued)

PARAMETER	TEST CONDITION	(NOTE 2) TEST LEVEL	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
LO VSWR		A	25	-	$2.0: 1$	-	-
IF Output Parallel Resistance CDMA or FM port (85MHz) Single End to GND.		B	25	-	12.4	-	$\mathrm{k} \Omega$
IF Output Parallel Capacitance CDMA or FM port (85MHz) Single End to GND.		B	25	-	1.7	-	pF

PIN DIODE BIAS CURRENT SOURCE SPECIFICATIONS (EACH OUTPUT Terminated into 0.7V)

Typical PIN diode AGC Range	Application schematic.	B	Full	33	38	-	dB
AGC_CTRL Voltage control Range	Rseries $=9.53 \mathrm{~K}$	A	25	0.5	-	2.5	V
PIN_O_IBIAS Max. Source Current.	AGC_CTRL $=2.0 \mathrm{~V}$	A	25	-	5.2	-	mA
PIN_O_IBIAS Current	AGC_CTRL $=1.8$	A	25	-	3.0	-	mA
	AGC_CTRL $=1.4 \mathrm{~V}$	A	25	-	0.47	-	mA
	AGC_CTRL $=1.0 \mathrm{~V}$	A	25	-	0.04	-	mA
PIN_O_BIAS Leakage current	AGC_CTRL $=0.5 \mathrm{~V}$	A	25	-	0.0	-	mA
PIN_O_IBIAS Current Vs Temperature	AGC_CTRL $=1.8 \mathrm{~V}$	B	25	-	200	-	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
PIN_O_IBIAS Current Vs Supply Voltage	AGC_CTRL $=1.8 \mathrm{~V}$	B	25	-	330	-	$\mu \mathrm{A} / \mathrm{V}$

POWER SUPPLY AND LOGIC SPECIFICATIONS

Supply Voltage		B	25	2.7	-	3.3	V
LNA Power supply (VLNA)		C	25	2.7	-	5.5	V
SEL And RX_PE, $\mathrm{V}_{\text {IL }}$		A	25	-	-	0.8	V
SEL And RX_PE, $\mathrm{V}_{\text {IH }}$		A	25	2.0	-	-	V
SEL AND RX_PE, Input Bias Currents at $V_{C C}$ $=3.0 \mathrm{~V}$	$\mathrm{VIH}=3.0 \mathrm{~V}$	A	25	-200	-	+200	$\mu \mathrm{A}$
	$\mathrm{VIL}=0.0 \mathrm{~V}$	A	25	-200	-	+200	$\mu \mathrm{A}$
LNA/Mixer Supply Current	AGC_CTRL $=0.5 \mathrm{~V}$	A	25	-	45	-	mA
Total PIN Diode Bias Circuit Supply Current	AGC_CTRL $=1.8 \mathrm{~V}$	B	25	-	11	-	mA
Power Down Supply Current	RX_PE = Low	A	25	-	10	100	$\mu \mathrm{A}$
Power Down Speed		B	25	-	-	10	$\mu \mathrm{s}$

NOTES:
2. $\mathrm{A}=$ Production Tested, $\mathrm{B}=$ Based on Characterization, $\mathrm{C}=\mathrm{By}$ Design
3. Output differential to single end match network to 50Ω for both CDMA and FM IF ports (Production Test Diagram in page 5).

Production Test Diagram

NOTE:
4. PC trace degeneration inductor. 93 mil by 8 mil trace terminating in a 10 mil via. Via is tied to a buried solid ground plane 12 mils deep. Material is FR4 $\mathrm{Er}=4.7$.

Typical RF Front End AGC Application Diagram

NOTE:
5. LNA degeneration inductance built with a PC trace to ground in combination with VLNA power supply to improve IIP3. A transmission line inductance of 1.2 nH at 882 MHz to a solid ground plane is typical (see Test Diagram).

DESIGN INFORMATION

External AGC Application Components Description

(Please refer to Typical RF and Front End AGC Application Diagram)

NOTE:In order to avoid input insertion losses and maintain the Noise Figure of this application optimized, the VSWR of the LNA input attenuator scheme is directly impacted by the input shunt PIN diode impedance when AGC is in action. This mismatch is absorbed by the duplexer/filter and there is no significant impact in its duplex characteristics to both antenna and transmitter ports.

R3 and R4 limit the output attenuation range and output VSWR.

R1 sets the scale factor, temperature coefficient and range of the gain control voltage.

R2 sets the turn-on point for the output PIN diode attenuator and R5 sets the turn-on point for the input PIN diode attenuator by shunting to ground some of the PIN diode bias current. By making R5 a smaller value than R2, the output attenuator turns on first, to optimize NF. Making R5 = R2 will turn both PIN diodes simultaneously to optimize the IIP3 during the initial AGC action. The R2/R5 combination can be tailored to specific AGC characteristics.

R6 generates the reference current which is used to set the operating point of all the major RF and IF transistors. A proportional to temperature (PTAT) voltage of about $37 \mathrm{mVat} 25^{\circ} \mathrm{C}$ is applied to this resistor. PTAT biasing keeps the gain temperature independent. A 10% variation from 523Ω is allowed. Lower values increase the total LNA and Mixer bias currents.

C1 filters noise from the gain control source to reduce unwanted AM modulation.

C2 and C4 provide DC isolation for PIN diode biasing. Their values are chosen to provide series resonance cancelling of the diode package and PC board inductances.

C3 and C6 decouple the PIN diode bias pins. Failure to decouple these pins may cause LNA oscillations.

LE adds degeneration to the LNA input for higher input intercept points. This combination of degeneration and a higher LNA $V_{C C}$ (VLNA) improves considerably the input intercept point with a slight decrease in gain. LE shall have very high Q and can be build with a small PC trace.

L1 and L4 permit DC biasing of the PIN diodes and RF isolation. Several types of 82 nH inductors have SRF near 900 MHz thus maximizing the RF isolation.

L2 and C13 are part of the output matching network and provides the DC bias path for the open collector output.

R7 and R8 define the Real part of the CDMA and FM output ports impedances. Unloaded "Q" of the coils used for proper biasing of these ports have to be taken into account when defining these values. The total load presented to these ports also define the achievable gain of the mixers. Because there is no internal feedback between the complementary ports of the differential channel, the loads and ports can be split into independent ports referenced to ground.

L7, L8 and L9, L10 have two functions: They provide a DC path to ground required for proper operation of the CDMA and FM differential outputs and can also be part of the match network between these ports and IF filters. C9, C10 and C12 are part of a match network to the suggested filters. L9, L10 and C12 are part of a current summer network for a differential to single end conversion. L12, L13 and C11 form a high " Q " match network between the converter and the suggested filter for the SAW IP3 distortion optimization.

All other unlabeled components on the schematics are bypass/decoupling capacitors. Values are chosen based on their SRF.

Shrink Small Outline Plastic Packages (SSOP)

M28.15
28 LEAD SHRINK NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.053	0.069	1.35	1.75	-
A1	0.004	0.010	0.10	0.25	-
A2	-	0.061	-	1.54	-
B	0.008	0.012	0.20	0.30	9
C	0.007	0.010	0.18	0.25	-
D	0.386	0.394	9.81	10.00	3
E	0.150	0.157	3.81	3.98	4
e	0.025		$B S C$	0.635	$B S C$
H	0.228	0.244	5.80	6.19	-
h	0.0099	0.0196	0.26	0.49	5
L	0.016	0.050	0.41	1.27	6
N	28		28		7
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 0 2/95
NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm (0.004 inch) total in excess of "B" dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may resul from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters

NORTH AMERICA	EUROPE
Intersil Corporation	Intersil SA
P. O. Box 883, Mail Stop 53-204	Mercure Center
Melbourne, FL 32902	100, Rue de la Fusee
TEL: (321) $724-7000$	1130 Brussels, Belgium
FAX: (321) $724-7240$	TEL: (32) 2.724.2111
	FAX: (32) 2.724 .22 .05

ASIA

Intersil Ltd.
8F-2, 96, Sec. 1, Chien-kuo North,
Taipei, Taiwan 104
Republic of China
TEL: 886-2-2515-8508
FAX: 886-2-2515-8369

