Semiconductor

- Resolution \qquad
- Maximum Conversion Speed 35MHz
- RGB 3-Channel Input/Output
- Differential Linearity Error ± 0.5 LSB
- Digital Input Voltage \qquad TTL Level
- Output Voltage Full Scale (Typ) \qquad . . 1V ${ }_{\text {P-P }}$
- Low Power Consumption (Typ) 360mW
- Direct Replacement for Sony CXA1260

Applications

- Digital TV
- Graphics Display
- High Resolution Color Graphics
- Video Reconstruction
- Instrumentation
- Image Processing
- I/Q Modulation

Pinout

Functional Block Diagram

Pin Descriptions

NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
$\begin{gathered} 1 \text { to } 16 \\ 39 \text { to } 42 \\ 44 \text { to } 47 \end{gathered}$	R1 to R8 G1 to G8 B1 to B8		Digital Input pin. From pins 39 to 42 and from 44 to 47 are for RED. R1 is MSB and R8 is LSB. From pins 1 to 8 are for GREEN. G1 is MSB and G8 is LSB. From pins 9 to 16 are for BLUE. $B 1$ is MSB and B8 is LSB.
18	CLK		Clock Input pin.
20	DV ${ }_{\text {CC }}$		Digital V_{CC}.
$\begin{gathered} 17 \\ 21 \text { to } 22 \end{gathered}$	NC		Vacant pin (no connection).
23	AGND		Analog GND.
24	$\mathrm{V}_{\text {SET }}$		Bias Input pin. Normally, apply 0.87 V . See "Note on use."
25	$\mathrm{V}_{\text {REF }}$		Internal Reference Voltage Out pin, 1.2V (Typ). A pull-down resistor is necessary externally. See "Notes on use."

Pin Descriptions (Continued)

NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
26	NC		Vacant pin (no connection).
27	$\mathrm{AV}_{\mathrm{CC}}$		Analog V_{CC}.
28	NC		Vacant pin but connect to $\mathrm{AV}_{\mathrm{CC}}$ (Note 1).
29	Bout		Analog Output pin for BLUE.
30	NC		Vacant pin but connect to $\mathrm{AV}_{\mathrm{CC}}$ (Note 1).
31	$G_{\text {OUT }}$		Analog Output pin for GREEN.
32	NC		Vacant pin but connect to $\mathrm{AV}_{\mathrm{CC}}$ (Note 1).
33	ROUT		Analog Output pin for RED.
34 To 36	NC		Vacant pin but connect to $\mathrm{AV}_{\mathrm{CC}}$ (Note 1).
19, 37, 43	DGND		Digital GND.
48	NC		Vacant pin (no connection).

NOTE:

1. Pins $30,32,34$ and 36 are vacant, but in order to reduce interference between the individual $R G B$ outputs, connect them to $\mathrm{AV}_{\mathrm{CC}}$.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Supply Voltage, V_{CC}. 0 V to 7 V Input Voltage (Digital)	
V_{1}.	-0.3V to V_{CC}
$V_{\text {CLK }}$	-0.3 V to V_{CC}
Input Voltage ($\mathrm{V}_{\text {SET }} \mathrm{Pin}$), $\mathrm{V}_{\text {SET }}$	-0.3 V to V_{CC}
Output Voltage (Analog), V ${ }_{\text {OUT }}$	$\mathrm{V}_{\mathrm{Cc}}-2.1 \mathrm{~V}$ to V_{CC}
Output Current (Analog), IOUT.	. 3 mA to 10mA
(VREF Pin), IREF.	. 5 mA to 0mA
Allowable Power Dissipation,	0.7 W

Recommended Operating Conditions

Temperature Range	$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{AV}_{\mathrm{CC}}, \mathrm{DV}_{\mathrm{CC}}$.	4.5 V to 5.5 V
$\mathrm{AV}_{\text {cc }}-\mathrm{DV}_{\text {cc }}$	-0.2V to 0.2V
AGND - DGND	-0.05V to 0.0.5V
Digital Input Voltage	
H Level, $\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {CLKH }}$.2.0V to $\mathrm{DV}_{\mathrm{CC}}$
L Level, $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{CL}}$	DGND to 0.8V

Thermal Information

Thermal Resistance (Typical, Note 2)
MQFP Package
$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(Lead Tips Only)
$\mathrm{V}_{\text {SET }}$ Input Voltage, $\mathrm{V}_{\text {SET }}$ 0.7 V to 1.0 V
$V_{\text {REF }}$ Pin Current, I REF. -3 mA to 0.4 mA Clock Pule Width

tpwo. 10ns

Digital Input Voltage
L Level, $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{CLKL}}$.
DGND to 0.8 V
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}, A V_{C C}=D V_{C C}=5.0 \mathrm{~V}, A G N D=D G N D=0.0 \mathrm{~V}$

PARAMETER			SYMBOL	TEST CONDITIONS	NOTES	MIN	TYP	MAX	UNITS
Resolution			RSL			-	8	-	Bit
Monotony			MNT			-	Guarantee	-	-
Differential Linearity Error			DLE	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.87 \mathrm{~V}$		-0.5	-	0.5	LSB
Integral Linearity Error			ILE	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \\ & \mathrm{FS}=\text { Full Scale } \end{aligned}$		-0.4	-	4	\% of FS
Maximum Conversion Speed			$\mathrm{f}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{SET}}-\mathrm{AGND}=0.87 \mathrm{~V}$		35	-	-	MSPS
Full Scale Output Voltage			V		Note 3	0.85	1.0	1.15	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
RGB Output Voltage Full Scale Ratio			FSR		Note 4	0	4	8	\%
Output Zero Offset Voltage			$V_{\text {OFFSET }}$			-40	-6	0	mV
Output Resistance			R_{O}			270	340	420	Ω
Consumption Current			ID	$\begin{aligned} & \mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.87 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{REF}}=-400 \mu \mathrm{~A} \\ & \hline \end{aligned}$		54	72	90	mA
Digital Data Input Current	H Level	Upper 2 Bits	$\mathrm{I}_{\mathrm{H}(\mathrm{U})}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{DV} \mathrm{C}_{\text {c }}$		-	1.2	20	$\mu \mathrm{A}$
		Lower 6 Bits	$\mathrm{IIH}_{\mathrm{H}(\mathrm{L})}$			-	0.6	10	$\mu \mathrm{A}$
	$\begin{array}{\|l} \hline \mathrm{L} \\ \text { Level } \end{array}$	Upper 2 Bits	ILL(U)	$\mathrm{V}_{1}=$ DGND		-10	0	10	$\mu \mathrm{A}$
		Lower 6 Bits	$1 \mathrm{IL}(\mathrm{L})$			-10	0	10	$\mu \mathrm{A}$
Clock Input Current		H Level	ICLKH	$\mathrm{V}_{\mathrm{CLK}}=\mathrm{DV}_{\mathrm{CC}}$		-	3	30	$\mu \mathrm{A}$
		L Level	ICLKL	$\mathrm{V}_{\text {CLK }}=$ DGND		-10	0	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SET }}$ Input Current			ISET	$\mathrm{V}_{\text {SET }}=\mathrm{AGND}=0.87 \mathrm{~V}$		-5	-0.3	0	$\mu \mathrm{A}$
Internal Reference Voltage			$\mathrm{V}_{\text {REF }}$	$\mathrm{I}_{\text {REF }}=-400 \mu \mathrm{~A}$		1.08	1.20	1.32	V
Set-Up Time			ts			12	-	-	ns
Hold Time			t_{H}			3	-	-	ns

NOTES:
$\left.\begin{aligned} & \text { 3. } \mathrm{AV}_{\mathrm{CC}}-\mathrm{V}_{0} \text {. } \\ & \text { 4. Maximum value among } 100 \times\left|\frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{R})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{G})}}-1\right|, 100 \times \left\lvert\, \frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{G})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{B})}}-1\right.\end{aligned} \right\rvert\,$, or $100 \times\left|\frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{B})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{R})}}-1\right|$.

TABLE 1. INPUT CORRESPONDING TABLE

Standard Circuit Design Data $T_{A}=25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{CC}}=\mathrm{DV}$ CC $=5.0 \mathrm{~V}$, $\mathrm{AGND}=\mathrm{DGND}=0.0 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	NOTES	MIN	TYP	MAX	UNITS
Crosstalk Among R, G and B	CT	$\begin{aligned} & \text { D/A OUT: } 1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF} \\ & \mathrm{f}_{\text {DATA }}=7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=14 \mathrm{MHz} \\ & \text { See Figure } 5 \end{aligned}$		-	-40	-35	dB
Glitch Energy	GE	$\begin{aligned} & \mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.87 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \\ & \text { Digital Ramp Output } \\ & \text { See Figure 6 } \end{aligned}$	Note 5	-	30	-	pV / s
Rise Time	t_{r}	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.87 \mathrm{~V}$ See Figure 4	Note 6	-	5.5	-	ns
Fall Time	t_{f}		Note 6	-	5.0	-	ns
Settling Time	tset			-	1.6	-	ns

NOTE:
5. Observe the glitch which is generated when the digital input varies as follows:

0	0	1	1	1	1	1	1	-	0	1	0	0	0	0	0	0
0	1	1	1	1	1	1	1	-	1	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1	-	1	1	0	0	0	0	0	0

6. The time required for the D/A OUT to arrive at 90% of its final value from 10%.

Test Circuits and Waveforms

FIGURE 1. DIFFERENTIAL LINEARITY AND INTEGRAL LINEARITY TEST CIRCUIT

Test Circuits and Waveforms (Continued)

FIGURE 2. MAXIMUM CONVERSION RATE TEST CIRCUIT

FIGURE 3. OUTPUT VOLTAGE FULL SCALE PRECISION, RGB OUTPUT VOLTAGE FULL SCALE RATIO, AND OUTPUT ZERO OFFSET VOLTAGE TEST CIRCUITS

Test Circuits and Waveforms (Continued)

FIGURE 4. SETUP TIME, HOLD TIME, AND RISE AND FALL TIME TEST CIRCUITS

NOTES: The following notes cover the measurement methods in case the measuring crosstalk of $\mathrm{G} \rightarrow \mathrm{R}$:
7. Apply the data to G only and measure the power of the frequency component of the data at $R_{\text {OUT }}$.
8. Apply the data to R only and measure the power of the frequency component of the data at ROUT.
9. Take the difference of the above two powers. The unit is in dB .

FIGURE 5. CROSSTALK AMONG R, G AND B TEST CIRCUIT

Test Circuits and Waveforms (Continued)

FIGURE 6. GLITCH ENERGY TEST CIRCUIT

Timing Diagram

DATA

At the time $t=t_{x}$, the data of individual bits are switched and thereafter, when the CLK becomes $L \rightarrow$ H at $t=t_{2}$, the D/A OUT is varied synchronous with it. That is, the D/A OUT is synchronous with the rise of the CLK. (In this case, fetching of the data is carried out at the fall of the CLK (at the time when $t=T_{12}$).)
V_{TH} : THRESHOLD LEVEL

At the time $t=T_{Y}$, the data of individual bits are switched and thereafter, when the CLK becomes $L \rightarrow$ H at $t=t_{4}$, the D/A OUT is synchronous with it. That is, the D/A OUT is synchronous with the rise of the CLK. (In this case, fetching of the data is carried out at the fall of CLK (at the time when $t=t_{4}$).)

FIGURE 7.

Typical Performance Curves

FIGURE 8. OUTPUT VOLTAGE FULL SCALE vs V ${ }_{\text {SET }}$ - AGND

FIGURE 10. OUTPUT VOLTAGE FULL SCALE vs AMBIENT TEMPERATURE

FIGURE 12. OUTPUT VOLTAGE FULL SCALE vs SUPPLY VOLTAGE

FIGURE 9. OUTPUT ZERO OFFSET VOLTAGE vs VSET - AGND

FIGURE 11. OUTPUT ZERO OFFSET VOLTAGE vs AMBIENT TEMPERATURE

FIGURE 13. OUTPUT ZERO OFFSET VOLTAGE vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 14. INTERNAL REFERENCE VOLTAGE vs AMBIENT TEMPERATURE

FIGURE 15. INTERNAL REFERENCE VOLTAGE vs SUPPLY VOLTAGE

FIGURE 16. CROSSTALK AMONG R, G AND B vs DATA FREQUENCY

Typical Application Circuit

FIGURE 17.

Notes On Use

- Setting of Pin 24 ($\mathrm{V}_{\mathrm{SET}}$)

The full scale of the D/A output voltage changes by applying voltage to pin $24\left(\mathrm{~V}_{\mathrm{SET}}\right)$. When load is connected to pin $25\left(\mathrm{~V}_{\mathrm{REF}}\right)$, DC voltage of 1.2 V is issued and the said voltage is dropped to 0.87 V by resistance division.

When the 0.87 V is applied to pin $24\left(\mathrm{~V}_{\mathrm{SET}}\right)$, the D / A output of $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ can be obtained.

FIGURE 18. EXAMPLE OF USE

Adjustment Method

The resistance R is determined in accordance with the recommended operating condition of $\mathrm{I}_{\mathrm{REF}}$ (Current flowing through resistance R).
See R vs $I_{\text {REF }}$ of Figure 19. The calculation expression is as follows: $R=V_{R E F} / l_{R E F}$.
Adjust the volume so that the RGB output voltage full scale becomes 1.0 V . (At this point, it becomes R1:R2 = 2:5).

- Phase Relationship Between Data and Clock

In order to obtain the desired characteristics as a D/A converter, it is necessary to set the phase relationship correctly between the externally applied data and clock.

Satisfy the standard of the setup time (t_{S}) and hold time $\left(\mathrm{t}_{\mathrm{H}}\right)$ indicated in the electrical characteristics. As to the reaming of t_{S} and t_{H}, see the timing chart.
Moreover, the clock pulse width is desired to be as indicated in the recommended operating condition.

FIGURE 19. RESISTANCE vs VREF PIN CURRENT

- Regarding the Load of D/A Output Pin

Receive the D/A output of the next stage with high impedance. In other words, perform so that it becomes as follows:
$R_{L}>10 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$
The temperature characteristics indicated in the characteristics diagram has been measured under this condition.

However, when it is made to $R_{L} \leq 10 \mathrm{k} \Omega$ the temperature characteristics may change considerably. In addition, when it is made to $C_{L} \leq 20 \mathrm{pF}$, the rise and fall of the D / A output become slow and will not operate at high speed.

- Noise Reduction Measures

As the D/A output voltage is a minute voltage of approximately 4 mV per one step, ingenuity is required in reducing the noise entering from the outside of the IC as much as possible. Therefore, use the items given below as reference.
When mounting onto the printed board, allow as much space as possible to the ground surface and the V_{CC} surface on the board and reduce the parasitic inductance and resistance.
It is desirable that the AGND and DGND be separated in the pattern on the board. It is similar with $A V_{C C}$ and $\mathrm{DV}_{\mathrm{CC}}$. As shown in the diagram below, for example, it is
recommended that the wiring to the electric supply of AGND and DGND as also $A V_{C C}$ and $D V_{C C}$ be conducted separately, and then making AGND and DGND as also $A V_{C C}$ and $D V_{C C}$ in common right near the power supply respectively.
Inset in parallel a $47 \mu \mathrm{~F}$ tantalum capacitor and a 100 pF ceramic capacitor between the V_{CC} surface on the printed board and the nearmost ground surface (A of diagram below). It is also desirable to insert the above between the V_{CC} surface near the pin of the IC and the ground surface (B of diagram below). They are bypass capacitors to prevent bad effects from occurring to the characteristics when the power supply voltage fluctuates due to the clock, etc.
It is recommended to reduce noise which overlaps the D/A output by inserting a capacitor of over $0.1 \mu \mathrm{~F}$ between pin 23 (AGND) and pin 24 (VSET).

FIGURE 20.

