

Pinout

Functional Block Diagram

Pin Descriptions

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
$\begin{gathered} \hline 1 \text { To } 20 \\ 39 \text { To } 42 \end{gathered}$	$\begin{aligned} & \text { R1 To R8 } \\ & \text { G1 To G8 } \\ & \text { B1 To B8 } \end{aligned}$		Digital Input pin. From pins 39 to 42 and from 1 to 4 are for RED. R1 is MSB and R8 is LSB. From pins 5 to 12 are for GREEN. G1 is MSB and G8 is LSB. From pins 13 to 20 are for BLUE. B1 is MSB and B8 is LSB.
21	CLK		Clock Input pin.
22	DV ${ }_{\text {CC }}$		Digital V_{CC}.
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	NC		No Connect.
25	AGND		Analog GND.
26	$\mathrm{V}_{\text {SET }}$		Bias Input pin. Normally, apply 0.8V.
27	$\mathrm{V}_{\text {REF }}$		Internal Reference Voltage Output pin 1.2 V (Typ). A pulldown resistance is necessary externally.

Pin Descriptions (Continued)

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
28	NC		No Connect.
29	$\mathrm{AV}_{\text {CC }}$		Analog V_{CC}.
30	NC		Vacant pin but connect to $\mathrm{AV}_{\text {CC }}$ (Note 1).
31	BOUT		Analog Output pin for BLUE.
32	NC		Vacant pin but connect to $\mathrm{AV}_{\text {CC }}$ (Note 1).
33	GOUT		Analog Output pin for GREEN.
34	NC		Vacant pin but connect to $\mathrm{AV}_{\text {CC }}$ (Note 1).
35	ROUT		Analog Output pin for RED.
36	NC		Vacant pin but connect to $\mathrm{AV}_{\text {CC }}$ (Note 1).
37	DGND		Digital GND.
38	NC		No Connect.

NOTE:

1. Pins $30,32,34$ and 36 are vacant, but in order to reduce interference between the individual $R G B$ outputs, connect them to $\mathrm{AV}_{\mathrm{CC}}$.

Absolute Maximum Ratings	
Supply Voltage (V_{CC})	OV to 7V
Input Voltage (Digital) ($\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{CLK}}$)	-0.3V to V_{CC}
Output Voltage (Analog) (VET)	$\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ to V_{CC}
Output Current	
Analog (lout)	-3 mA to 10 mA
$\mathrm{V}_{\text {REF }}$ Pin (l ${ }_{\text {ReF }}$)	-5mA to 0mA
Supply Voltage Range (Typ)	5 V to 10V

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package
70
Maximum Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)-65 ${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s). $300^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage

$\mathrm{AV}_{\mathrm{CC}}, \mathrm{DV}_{\mathrm{CC}}$	4.5 V to 5.5 V
$\mathrm{AV}_{\mathrm{cc}}-\mathrm{DV}_{\mathrm{cc}}$	-0.2V to 0.2V
AGND-DGND	-0.05 V to 0.05 V
Digital Input Voltage	
H Level ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {CLKH }}$)	.2.0V to $\mathrm{DV}_{\mathrm{CC}}$
L Level ($\mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {CLKL }}$)	DGND to 0.8V
$\mathrm{V}_{\text {SET }}$ Input Voltage ($\mathrm{V}_{\text {SET }}$)	. 0.7 V to 0.9 V
$\mathrm{V}_{\text {REF }}$ Pin Current ($\mathrm{I}_{\text {REF }}$).	-3 mA to -0.4 mA
Clock Pulse Width	
tpW1	.15ns
tpwo	.10ns

Temperature Range (TOPR) . $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}, A V_{C C}=D V_{C C}=5 \mathrm{~V}, A G N D=D G N D=0 \mathrm{~V}$

PARAMETER			SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Resolution			RSL		-	8	-	Bit
Monotonic			MNT		-	Guarantee	-	-
Differential Linearity Error			DLE	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.8 \mathrm{~V}$,	-0.5	-	0.5	LSB
Integral Linearity Error			ILE	$\mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega$	-0.4	-	0.4	\% of Full Scale
Maximum Conversion Speed			$\mathrm{f}_{\text {MAX }}$	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.8 \mathrm{~V}$,	35	-	-	MHz
Full Scale Output Voltage (Note 3)			V ${ }_{\text {OFS }}$	$\mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$	0.85	1.0	1.15	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
RGB Output Voltage Full Scale Ratio (Note 4)			FSR		0	4	8	\%
Output Zero Offset Voltage			$V_{\text {OFFSET }}$		-40	-6	0	mV
Output Resistance			R_{O}		270	340	420	Ω
Dissipation Current			ID	$\begin{aligned} & \hline \mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{REF}}=-400 \mu \mathrm{~A} \\ & \hline \end{aligned}$	54	72	90	mA
Digital Data Input Current	H Level	Upper 2 Bits	$\mathrm{IIH}_{(\mathrm{U}}$)	$\mathrm{V}_{\mathrm{I}}=\mathrm{DV}_{\text {CC }}$	-	1.2	20	$\mu \mathrm{A}$
		Lower 6 Bits	$\mathrm{IIH}_{\mathrm{H}(\mathrm{L})}$		-	0.6	10	$\mu \mathrm{A}$
	L Level	Upper 2 Bits	IIL(U)	$\mathrm{V}_{1}=$ DGND	-10	0	10	$\mu \mathrm{A}$
		Lower 6 Bits	IIL(U)		-10	0	10	$\mu \mathrm{A}$
Clock Input Current		H Level	ICLKH	$\mathrm{V}_{\text {CLK }}=\mathrm{DV}_{\text {CC }}$	-	3	30	$\mu \mathrm{A}$
		L Level	ICLKL	$\mathrm{V}_{\text {CLK }}=$ DGND	-10	0	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SET }}$ Input Current			ISET	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.8 \mathrm{~V}$	-5	-0.3	0	$\mu \mathrm{A}$
Internal Reference Voltage			$\mathrm{V}_{\text {REF }}$	$\mathrm{I}_{\text {REF }}=-400 \mu \mathrm{~A}$	1.08	1.20	1.32	V
Set-Up Time			ts		12	-	-	ns
Hold Time			t_{H}		3	-	-	ns
Crosstalk Among R, G and B			CT	D/A OUT: 1V $\mathrm{V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}, \mathrm{f}_{\text {DATA }}=7 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{CLK}}=14 \mathrm{MHz}$, See Figure 5	-	-40	-33	dB

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}, A V_{C C}=D V_{C C}=5 \mathrm{~V}, A G N D=D G N D=0 \mathrm{~V}$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Glitch Energy	GE	$\mathrm{V}_{\text {SET }}-\mathrm{AGND}=0.8 \mathrm{~V}$, $R_{L}>10 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$, Digital Ramp Output, See Figure 6 (Note 5)	-	160	-	pV/s
Rise Time (Note 6)	tr_{r}	$\mathrm{V}_{\mathrm{SET}}-\mathrm{AGND}=0.8 \mathrm{~V}$ See Figure 4	-	5.5	-	ns
Fall Time (Note 6)	t_{f}		-	5.0	-	ns
Settling Time	${ }_{\text {tSET }}$		-	16	-	ns

NOTES:
3. $A V_{C C}-V_{O}$.
4. Maximum value among $\quad 100 \times\left|\frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{R})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{G})}}-1\right|, 100 \times\left|\frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{G})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{B})}}-1\right|$, or $100 \times\left|\frac{\mathrm{V}_{\mathrm{OFS}(\mathrm{B})}}{\mathrm{V}_{\mathrm{OFS}(\mathrm{R})}}-1\right|$.
5. Observe the glitch which is generated when the digital input varies as follows:
$\begin{array}{llllllllllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & -0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 01 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
6. The time required for the D/A OUT to arrive at 90% of its final value from 10%.

INPUT CORRESPONDING TABLE

INPUT CODE		OUTPUT VOLTAGE
MSB	LSB	
	11111111	$\mathrm{V}_{\text {CC }}+\mathrm{V}_{\text {OFFSET }}$
	-	
	-	
	-	
	10000000	$\mathrm{V}_{\text {CC }}+\mathrm{V}_{\text {OFFSET }}-0.5 \mathrm{~V}$
	-	-
	-	-
	-	-
	00000000	$\mathrm{V}_{\text {CC }}+\mathrm{V}_{\text {OFFSET }}-1.0 \mathrm{~V}$

NOTE: In case the output voltage full scale is $1 \mathrm{~V}(1 \mathrm{LSB}=3.92 \mathrm{mV})$.

Test Circuits

FIGURE 1. DIFFERENTIAL LINEARITY AND INTEGRAL LINEARITY TEST CIRCUITS

Test Circuits (Continued)

FIGURE 2. MAXIMUM CONVERSION RATE TEST CIRCUIT

FIGURE 3. OUTPUT VOLTAGE FULL SCALE PRECISION, RGB OUTPUT VOLTAGE FULL SCALE RATIO, AND OUTPUT ZERO OFFSET VOLTAGE TEST CIRCUITS

Test Circuits (Continued)

FIGURE 4. SET-UP TIME, HOLD TIME, AND RISE AND FALL TIME TEST CIRCUITS

Measuring Method, in case the measuring crosstalk of $G \rightarrow R$:

1. Apply the data to G only, and measure the power of the frequency component of the data at ROUT.
2. Apply the data to R only, and measure the power of the frequency component of the data at ROUT.
3. Take the difference of the above two powers; the unit is in dB .

FIGURE 5. CROSSTALK AMONG R, G, AND B TEST CIRCUIT

Test Circuits (Continued)

FIGURE 6. GLITCH ENERGY TEST CIRCUIT

$\dagger R$ is matching resistance for LPF.
FIGURE 7. APPLIED CIRCUIT EXAMPLE

Timing Diagram

NOTE: At the time $t=t_{X}$, the data of individual bits are switched and thereafter, when the CLK becomes $L \rightarrow H$ at $t=t_{2}$, the D/A OUT is varied synchronous with it. That is, the D/A OUT is synchronous with the rise of the CLK. [In this case, fetching of the data is carried out at the fall of the CLK (at the time when $t=t_{12}$)].

FIGURE 8. TIMING CHART

Notes On Use

(1) Setting of pin $26\left(\mathrm{~V}_{\mathrm{SET}}\right)$

The full scale of the D/A output voltage changes by applying voltage to pin 26 ($\mathrm{V}_{\mathrm{SET}}$). When load is connected to pin $27\left(\mathrm{~V}_{\mathrm{REF}}\right)$, DC voltage of 1.2 V is issued and the said voltage is dropped to 0.8 V by resistance division.

When the 0.8 V is applied to pin $26\left(\mathrm{~V}_{\mathrm{SET}}\right)$, the D / A output of $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ can be obtained.
(Example of use):

FIGURE 9.
(Adjustment Method)

1. The resistance R is determined in accordance with the recommended operating condition of $\mathrm{I}_{\mathrm{REF}}$, (current flowing through resistance R).

See R vs $I_{\text {REF }}$ of Figure 14. The calculation expression is as follows:
$R=V_{\text {REF }} / I_{\text {REF }}$.
2. Adjust the volume so that the RGB output voltage full scale becomes 1 V .
(At this point, it becomes R1: R2 = 1:2).

FIGURE 10. RESISTANCE vs VREF PIN CURRENT
(2) Phase Relationship Between Data and Clock

In order to obtain the desired characteristics as a D/A converter, it is necessary to set the phase relationship correctly between the externally applied data and clock.

Satisfy the standard of the set-up time (t_{S}) and hold time (t_{H}) indicated in the electrical characteristics. As to the meaning of t_{S} and t_{H}, see the timing chart.
Moreover, the clock pulse width is desired to be as indicated in the recommended operating condition.
(3) Regarding the Load of D/A Output Pin

Receive the D/A output of the next stage with high impedance. In other words perform so that it becomes as follows:

$$
\begin{aligned}
& R_{\mathrm{L}}>10 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF} .
\end{aligned}
$$

The temperature characteristics indicated in the characteristics diagram has been measured under this condition.

However, when it is made $R_{L} \leq 10 k \Omega$ the temperature characteristics may change considerably. In addition, when it is made to $C_{L} \geq 20 \mathrm{pF}$, the rise and fall of the D/A output become slow and will not operate at high speed.
(4) Noise Reduction Measures

As the D/A output voltage is a minute voltage of approximately 4 mV per one step, ingenuity is required in reducing the noise entering from the outside of the IC as much as possible. Therefore, use the items given below as reference.

- When mounting onto the printed board, allow as much space as possible to the ground surface and the $V_{C C}$ surface on the board and reduce the parasitic inductance and resistance.
- It is desirable that the AGND and DGND be separated in the pattern on the board. It is similar with $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$. As shown in the diagram below, for example, it is recommended that the wiring to the electric supply of AGND and DGND as also $A V_{C C}$ and $\mathrm{DV}_{\mathrm{CC}}$ be conducted separately, and then making AGND and DGND as also $A V_{C C}$ and $D V_{C C}$ in common right near the power supply respectively.
- Insert in parallel a $47 \mu \mathrm{~F}$ tantalum capacitor and a 100 pF ceramic capacitor between the V_{CC} surface on the printed board and the nearmost ground surface. (A of diagram below). It is also desirable to insert the above between the V_{CC} surface near the pin of the IC and the ground surface (see Figure 11). They are bypass capacitors to prevent bad effects from occurring to the characteristics when the power supply voltage fluctuates due to the clock, etc.
It is recommended to reduce noise which overlaps the D / A output by inserting a capacitor of over $0.1 \mu \mathrm{~F}$ between pin 25 (AGND) and pin 26 (VSET).

FIGURE 11.

Typical Performance Curves

FIGURE 12. OUTPUT VOLTAGE FULL SCALE vs VSET - AGND

FIGURE 14. OUTPUT VOLTAGE FULL SCALE vs AMBIENT TEMPERATURE

FIGURE 16. OUTPUT VOLTAGE FULL SCALE vs POWER SUPPLY VOLTAGE

FIGURE 13. OUTPUT ZERO OFFSET VOLTAGE vs VSET - AGND

FIGURE 15. OUTPUT ZERO OFFSET vs AMBIENT TEMPERATURE

FIGURE 17. OUTPUT ZERO OFFSET VOLTAGE vs POWER SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 18. INTERNAL REFERENCE VOLTAGE vs AMBIENT TEMPERATURE

FIGURE 19. INTERNAL REFERENCE VOLTAGE vs POWER SUPPLY VOLTAGE

FIGURE 20. CROSSTALK AMONG R, G, AND B vs DATA RATE

