16 Channel High Voltage Analog Switch

Ordering Information

$\mathbf{V}_{\mathrm{PP}}-\mathbf{V}_{\mathrm{NN}}$	Package Options	
	48-lead TQFP	Die

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology for high performance
- 220 V operating conditions
- Output On-resistance typically 22Ω
- 5.0 V and 12.0 V CMOS logic compatibility
- Very low quiescent power dissipation-10 A
- -45 dB min off isolation at 7.5 MHz
- Low parasitic capacitance
- Excellent noise immunity
- Flexible high voltage supplies

General Description

The Supertex HV208 is a 220V 16-channel high-voltage analog switch integrated circuit (IC) configured as 2 sets of 8 single pole single throw analog switches. It is intended for use in applications requiring high voltage switching controlled by low voltage control signals such as ultrasound imaging and printers. The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{\text {iN }} 1$ and $D_{\text {IN }} 2$. A logic high on $D_{\text {IN }} 1$ will turn $O N$ switches 0 to 7 and a logic high on $D_{1 \mathbb{N}} 2$ will turn $O N$ switches 8 to 15.

Absolute Maximum Ratings*

V_{DD} Logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ Supply voltage	+225 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive high voltage supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+225 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ Negative high voltage supply	+0.5 V to -225 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{SIG}}$ Analog Signal Range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	48-lead TQFP

* All voltages are referenced to ground. Absolute maximum ratings are those values which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

Electrical Characteristics

DC Characteristics (over recommended operating conditions unless otherwise noted)

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$\mathbf{+ 2 5}^{\circ} \mathrm{C}$			+70 ${ }^{\circ} \mathrm{C}$		Units	Test Conditions
		min	max	min	typ	max	min	max		
Small Signal Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		30		26	32		40	ohms	$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{S I G}=5 \mathrm{~mA}, \\ & V_{P P}=50 \mathrm{~V}, V_{\mathrm{NN}}=-170 \mathrm{~V} \end{aligned}$
			25		22	27		35		$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SIG}}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V} \end{aligned}$
			15		22	27		30		$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SIG}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$
			20		18	22		25		$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{\mathrm{SIG}}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$
Small Signal Switch (ON) Resistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$		20		5.0	20		20	\%	$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, I_{\text {SIG }}=5 \mathrm{~mA}, \\ & V_{P P}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$
Large Signal Switch (ON) Resistance	$\mathrm{R}_{\text {ONL }}$				15				ohms	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1.0 \mathrm{~A}$
Switch Off Leakage Per Switch	$\mathrm{I}_{\text {SOL }}$		5.0		1.0	10		15	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$
DC Offset Switch OFF		300			100	300		300	mV	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{Kohms}$
DC Offset Switch ON		500			100	500		500		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{Kohms}$
Pos. HV Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$				10	50			$\mu \mathrm{A}$	All SWs OFF
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-10	-50				All SWs OFF
Pos. HV Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$				10	50				All $\mathrm{SWs} \mathrm{ON}, \mathrm{I}_{\text {SW }}=5 \mathrm{~mA}$
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-10	-50				All SWs ON, $\mathrm{I}_{\text {SW }}=5 \mathrm{~mA}$
Switch Output Peak Current			3.0		3.0	2.0		2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $\leq 0.1 \%$
Output Switch Frequency	$\mathrm{f}_{\text {sw }}$					50			KHz	Duty Cycle $=50 \%$
$\mathrm{I}_{\text {PP }}$ Supply Current	$l_{\text {PP }}$		8.1			8.8		10	mA	$\mathrm{V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V}$, ALL SWs turning ON and OFF at 50 KHz
$\mathrm{I}_{\text {NN }}$ Supply Current	I_{NN}		-8.1			-8.8		-10		
I Pp Supply Current	$\mathrm{I}_{\text {PP }}$		5			6.3		6.9		$V_{P P}=110 \mathrm{~V}, V_{\mathrm{NN}}=-110 \mathrm{~V}, \text { All SWs }$ turning ON and OFF at 50 kHz
$\mathrm{I}_{\text {NN }}$ Supply Current	I_{NN}		-5			-6.3		-6.9		
Logic Supply Quiescent Current	$\mathrm{I}_{\mathrm{DDQ}}$		10			10		10	$\mu \mathrm{A}$	All logic states are at DC
Logic Supply Average Current	I_{DD}		2.0			2.0		2.0	mA	$\mathrm{D}_{\text {IN }} 1=\mathrm{D}_{\text {IN }} 2=3 \mathrm{MHz}, \overline{\mathrm{LE}}=$ high

Electrical Characteristics

AC Characteristics (over recommended operating conditions unless otherwise noted)

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Test Conditions
		min	max	min	typ	max	min	max		
Time to Turn OFF $\mathrm{V}_{\text {SIG }}{ }^{*}$	$\mathrm{t}_{\text {SIG(OFF) }}$	0		0			0		ns	
Time Width of LE	$\mathrm{t}_{\text {WLE }}$	150		150			150		ns	
Time Width of $\mathrm{D}_{\text {IN }}$	$\mathrm{t}_{\text {WDIN }}$	150		150			150		ns	
Set Up Time Before $\overline{\mathrm{LE}}$ Rises	$\mathrm{t}_{\text {SD }}$	150		150			150		ns	
Turn On Time	t_{ON}		2.0			2.0		2.0	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{~K} \Omega$
Turn Off Time	$\mathrm{t}_{\text {OFF }}$		2.0			2.0		2.0	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{~K} \Omega$
Off Isolation	KO	-30		-30	-33		-30		dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1 \mathrm{~K} \Omega / 15 \mathrm{pF}$ Load
		-45		-45	-50		-45		dB	$\mathrm{f}=7.5 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
Switch Crosstalk	K_{CR}	-45		-45			-45		dB	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
Off Capacitance Switch to GND	$\mathrm{C}_{\text {GS(OFF) }}$	5.0	17	5.0	12	17	5.0	17	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, 1 \mathrm{MHz}$
On Capacitance Switch to GND	$\mathrm{C}_{\mathrm{GS} \text { (ON) }}$	25	50	25	38	50	25	50	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, 1 \mathrm{MHz}$
Output Voltage Spike	$\frac{+V_{\mathrm{SPK}}}{-\mathrm{V}_{\mathrm{SPK}}}$				-4.0				V	
	- ${ }_{\text {SPK }}$				-4.0					

*Time required for analog signal to turn off before output switch turns off.

Operating Conditions

Symbol	Parameter	Value
V_{PP}	Positive high voltage supply ${ }^{1}$	+50 V to +110 V
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply ${ }^{1}$	-10 V to $\mathrm{V}_{\mathrm{PP}}-220 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{DD}}$	${\text { Logic power supply voltage }{ }^{1}}_{4.75 \mathrm{~V} \text { to }+12.6 \mathrm{~V}} \mathrm{~V}_{\mathrm{IH}}$	High-level input voltage
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ to V_{DD}
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak ${ }^{2}$	0 V to 1.0 V
$\mathrm{~T}_{\mathrm{A}}$	Operating free air-temperature	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$

Notes:

1 Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
$2 \mathrm{~V}_{\text {SIG }}$ must be $\mathrm{V}_{\text {NN }} \leq \mathrm{V}_{\text {SIG }} \leq \mathrm{V}_{\mathrm{PP}}$ or floating during power up/down transition.

Truth Table

$\mathrm{D}_{\text {IN }} 2$	$\mathrm{D}_{\text {IN }} 1$	$\overline{\mathrm{LE}}$	SW0 to SW7	SW8 to SW15
L	L	L	OFF	OFF
L	H	L	ON	OFF
H	L	L	OFF	ON
H	H	L	ON	ON
X	H	HOLD PREVIOUS STATE		

Test Circuits

Switch OFF Leakage

DC Offset ON/OFF

Isolation Diode Current

$\mathrm{T}_{\text {ON }} / \mathrm{T}_{\text {OFF }}$ Test Circuit

OFF Isolation

$\mathrm{K}_{\text {CR }}=20$ Log $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$
Crosstalk

$Q=1000 \mathrm{pF} \times \Delta V_{\text {OUT }}$
Charge Injection

Output Voltage Spike

Logic Timing Waveform

Block Diagram

Pin Configuration

HV208 48-Pin TQFP

Pin	Function	Pin	Function
1	$\mathrm{~V}_{\text {NN }}$	25	SW10
2	N/C	26	SW10
3	$\mathrm{~V}_{\text {PP }}$	27	SW9
4	N/C	28	SW9
5	$\mathrm{D}_{\text {IN }} 1$	29	SW8
6	LE^{2}	30	SW8
7	$\mathrm{D}_{\text {IN } 2}$	31	SW7
8	N/C	32	SW7
9	N/C	33	SW6
10	$\mathrm{~V}_{\text {DD }}$	34	SW6
11	GND	35	SW5
12	N/C	36	SW5
13	N/C	37	SW4
14	SW15	38	N/C
15	SW15	39	SW4
16	SW14	40	N/C
17	SW14	41	SW3
18	SW13	42	SW3
19	SW13	43	SW2
20	SW12	44	SW2
21	SW12	45	SW1
22	SW11	46	SW1
23	SW11	47	SW0
24	N/C	48	SW0

Package Outline

