64-Channel Serial To Parallel Converter With Open Drain Outputs

Ordering Information

Device	Package Options	
	80-Lead Quad Plastic Gullwing	Die
	HV3137PG	HV3137X

Features

\square HVCMOS $^{\circledR}$ technology
\square Output voltages up to 375V
\square Sink current minimum 1 mA
\square Shift register speed 6 MHz
\square Latched outputs
\square CMOS compatible inputs
\square Forward and reverse shifting options

General Description

The HV31 is a low voltage serial to high voltage parallel converter with open drain outputs. It has been designed especially for use as a driver for electrostatic printers.
This device consists of a 64-bit shift register, 64 latches, latch enable ($\overline{\mathrm{LE}}$), and output enable (OE). Data is shifted through the shift register on the high to low transition of the clock. When the DIR pin is set high, the HV31 shifts in the counterclockwise direction when viewed from the top of the package. When the DIR pin is set low, the HV31 shifts in the clockwise direction. A serial data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register. Operation of the shift register is not affected by the $\overline{\mathrm{LE}}$ or the OE inputs. Transfer of data from the shift register to the latch occurs when the $\overline{\mathrm{LE}}$ input is high. The data in the latch is stored when $\overline{\mathrm{LE}}$ is low.

Absolute Maximum Ratings ${ }^{1}$

Supply voltage, V_{DD}	-0.5 V to +9 V
Supply voltage, V_{PP}	-0.5 V to +400 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{2}$	0.75 A
Continuous total power dissipation ${ }^{2}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Notes:

1. All voltages are referenced to GND.
2. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly by $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ up to $85^{\circ} \mathrm{C}$.

Electrical Characteristics (over recommended operating conditions unless noted)
DC Characteristics

Symbol	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	V_{DD} Supply Current				15	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}, \mathrm{f}_{\mathrm{DATA}}=3 \mathrm{MHz} \\ & \mathrm{LE}=\mathrm{LOW} \end{aligned}$
$\mathrm{I}_{\text {DDQ }}$	Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current				250	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {(OFF) }}$	Off State Output Current at $25^{\circ} \mathrm{C}$, per Switch				100	nA	Output high, and at 375V
I_{IH}	High-Level Logic Input Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\text {IL }}$	Low-Level Logic Input Current				-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
V_{OH}	High-Level Data Out		$\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$			V	$1 D_{\text {OUT }}=-100 \mu \mathrm{~A}$
V_{OL}	Low-Level Output	HV ${ }_{\text {OUT }}$			10	V	$1 \mathrm{HV}_{\text {OUT }}=+1 \mathrm{~mA}$
		Data Out			1	V	$1 \mathrm{D}_{\text {OUT }}=+100 \mu \mathrm{~A}$
V_{OC}	HV ${ }_{\text {OUT }}$ Clamp Voltage				-3.0	V	$\mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{HVO}}$	Output Capacitance per Channel				3	pF	$\mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency			6	MHz	
t_{W}	Clock Width High or Low	83			ns	
t_{SU}	Data Setup Time Before Clock Falls	35			ns	
t_{H}	Data Hold Time After Clock Falls	15			ns	
$\mathrm{t}_{\text {WLE }}$	Width of Latch Enable Pulse	83			ns	
$\mathrm{t}_{\mathrm{DLE}}$	$\overline{\text { LE Delay Time After Falling Edge of Clock }}$	35			ns	
$\mathrm{t}_{\mathrm{SLE}}$	$\overline{\text { LE Setup Time Before Falling Edge of Clock }}$	40			ns	
$\mathrm{t}_{\mathrm{DHL}}$	Clock Delay Time Data High to Low			135	ns	
$\mathrm{t}_{\mathrm{DLH}}$	Clock Delay Time Data Low to High			135	ns	

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Units
V_{DD}	Logic supply voltage	4.5	5	5.5	V
$\mathrm{HV}_{\text {OUT }}$	High voltage output	8.0		375	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	3.5		$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IL}	Low-level input voltage	0		0.8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40		+85	${ }^{\circ} \mathrm{C}$

Notes:

Power-up sequence should be the following:

1. Connect ground.
2. Apply $V_{D D}$.
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
4. Apply V_{Pp}.

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs						Outputs		
	Data	CLK	$\overline{\text { LE }}$	OE	DIR	Shift Reg $12 \ldots 64$	$\begin{gathered} \hline \text { Latch } \\ 12 \ldots 64 \end{gathered}$	$\begin{gathered} \mathrm{HV}_{\text {OUT }} \\ 12 \ldots 64 \end{gathered}$	$\mathrm{D}_{\text {OUT }}$
All off	X	X	X	L	X	*...*	*...*	OFF...OFF	*
Load S/R	H or L	\downarrow	L	L	H	H or L... $\mathrm{Qn} \rightarrow \mathrm{Qn}+1$	*...*	OFF...OFF	*
	H or L	\downarrow	L	L	L	H or L...Qn \rightarrow Qn-1	*...*	OFF...OFF	*
Load Latch	X	X	H	L	X	H or L...*	H or L...*	OfF...OFF	*
Output Enable	X	H or L	H	H	X	H or L...*	H or L...*	ON or OFF...*	*
Transparent Latch	H	\downarrow	H	H	X	H...*	H...*	ON ...*	*
Mode	L	\downarrow	H	H	X	L ...*	L...*	OFF...*	*

Notes:
X = Don't care

* = Dependent on previous stage's state before the last CLK : High to low transition.
$\downarrow=$ High to low transition
$\mathrm{H}=$ High level
L = Low level

Pin Configurations

PG and DG Packages

HV31			
Pin	Function	Pin	Function
1	GND	41	N/C
2	N/C	42	N/C
3	HV ${ }_{\text {OUT }} 59 / 6$	43	HV ${ }_{\text {OUT }} 23 / 42$
4	HV ${ }_{\text {OUT }} 60 / 5$	44	HV ${ }_{\text {OUT }} 24 / 41$
5	HV ${ }_{\text {OUT }} 61 / 4$	45	HV ${ }_{\text {OUT }} 25 / 40$
6	HV ${ }_{\text {OUT }}$ 62/3	46	HV ${ }_{\text {OUT }} 26 / 39$
7	HV ${ }_{\text {OUT }}$ 63/2	47	HV ${ }_{\text {OUT }} 27 / 38$
8	HV ${ }_{\text {OUT }} 64 / 1$	48	HV ${ }_{\text {OUT }} 28 / 37$
9	DIR	49	HV ${ }_{\text {OUT }} 29 / 36$
10	Data Out	50	HV ${ }_{\text {OUT }} 30 / 35$
11	CLK	51	HV ${ }_{\text {OUT }} 31 / 34$
12	GND	52	HV ${ }_{\text {OUT }} 32 / 33$
13	V_{DD}	53	HV ${ }_{\text {OUT }} 33 / 32$
14	$\overline{\mathrm{LE}}$	54	HV ${ }_{\text {OUT }} 34 / 31$
15	Data In	55	HV ${ }_{\text {OUT }} 35 / 30$
16	OE	56	HV ${ }_{\text {OUT }} 36 / 29$
17	HV ${ }_{\text {OUT }} 1 / 64$	57	HV ${ }_{\text {OUT }} 37 / 28$
18	HV ${ }_{\text {OUT }}{ }^{2 / 63}$	58	HV ${ }_{\text {OUT }} 38 / 27$
19	HV ${ }_{\text {OUT }} 3 / 62$	59	HV ${ }_{\text {OUT }} 39 / 26$
20	HV ${ }_{\text {OUT }} 4 / 61$	60	HV ${ }_{\text {OUT }} 40 / 25$
21	HV ${ }_{\text {OUT }} 5 / 60$	61	HV ${ }_{\text {OUT }} 41 / 24$
22	HV ${ }_{\text {OUT }} 6 / 59$	62	HV ${ }_{\text {OUT }} 42 / 23$
23	N/C	63	N/C
24	HV ${ }_{\text {OUT }}$ GND	64	N/C
25	$\mathrm{HV}_{\text {OUT }} 7 / 58$	65	HV ${ }_{\text {OUT }} 43 / 22$
26	HV ${ }_{\text {OUT }} 8 / 57$	66	HV ${ }_{\text {OUT }} 44 / 21$
27	HV ${ }_{\text {OUT }} 9 / 56$	67	HV ${ }_{\text {OUT }} 45 / 20$
28	HV ${ }_{\text {OUT }} 10 / 55$	68	HV ${ }_{\text {OUT }} 46 / 19$
29	HV ${ }_{\text {OUT }} 11 / 54$	69	HV ${ }_{\text {OUT }} 47 / 18$
30	HV ${ }_{\text {OUT }} 12 / 53$	70	HV ${ }_{\text {OUT }} 48 / 17$
31	HV ${ }_{\text {OUT }} 13 / 52$	71	HV ${ }_{\text {OUT }} 49 / 16$
32	HV ${ }_{\text {OUT }} 14 / 51$	72	HV ${ }_{\text {OUT }} 50 / 15$
33	HV ${ }_{\text {OUT }} 15 / 50$	73	HV ${ }_{\text {OUT }} 51 / 14$
34	HV ${ }_{\text {OUT }} 16 / 49$	74	HV ${ }_{\text {OUT }} 52 / 13$
35	HV ${ }_{\text {OUT }} 17 / 48$	75	HV ${ }_{\text {OUT }} 53 / 12$
36	HV ${ }_{\text {OUT }} 18 / 47$	76	HV ${ }_{\text {OUT }} 54 / 11$
37	HV ${ }_{\text {OUT }} 19 / 46$	77	HV ${ }_{\text {OUT }} 55 / 10$
38	HV ${ }_{\text {OUT }} 20 / 45$	78	HV ${ }_{\text {OUT }} 56 / 9$
39	HV ${ }_{\text {OUT }} 21 / 44$	79	HV ${ }_{\text {OUT }} 57 / 8$
40	$\mathrm{HV}_{\text {OUT }} 22 / 43$	80	HV ${ }_{\text {OUT }} 58 / 7$

Package Outline

top view
80-pin Gullwing Package

Note:
Pin designation DIR $=\mathrm{H} / \mathrm{L}$
Example: For DIR $=\mathrm{H}, \mathrm{Pin} 3$ is $\mathrm{HV}_{\text {OUT }} 59$ For DIR $=\mathrm{L}$, Pin 3 is $\mathrm{HV}_{\text {OUT }} 6$

