High-Voltage Ring Generator

Ordering Information

Operating Voltage	Package Options		
V _{PP1} - V _{NN1}	SOW-16		
220V	HV440WG		

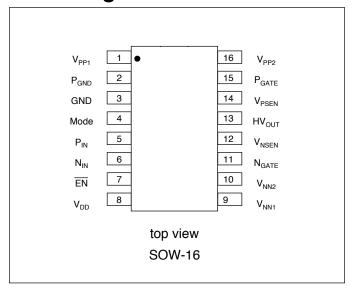
Features

- 220V maximum operating voltage
- Integrated high voltage transistors
- ☐ Up to 70 V_{RMS} ring signal
- Pulse by pulse output over current protection
- 5 REN output capability
- External MOSFETs enhance output rating to 20 REN

Applications

- Microcontroller or microprocessor controlled high voltage ring generator
- Set-top/Street box ring generator
- Pair gain ring generator
- Wireless local loops
- Fiber in the loop/to the curb
- Coax cable loop

Absolute Maximum Ratings


V_{PP1} - V_{NN1} , power supply voltage	+240V
V _{PP1} , positive high voltage supply	+120V
V _{PP2} , positive gate voltage supply	+120V
V _{NN1} , negative high voltage supply	-170V
V _{NN2} , negative gate voltage supply	-170V
V _{DD} , logic supply	+7.5V
Storage temperature	-65°C to +150°C
Power dissipation	800mW

General Description

The Supertex HV440 is a monolithic integrated circuit capable of generating up to a 70V RMS sine wave output at frequencies of 15Hz to 60Hz with a load of 5 North American RENs. Its output rating can be enhanced to 20 North American RENs with the addition of two Supertex MOSFETs: one N-Channel MOSFET, the TN2524N8 and one P-Channel MOSFET, the TP2522N8.

The high voltage output P- and N-Channel transistors are controlled independently by the logic inputs $P_{\rm IN}$ and $N_{\rm IN}$. Connecting the mode pin to ground will enable the device to be controlled with a single input, $N_{\rm IN}$. This adds a 200ns deadband on the control logic to avoid cross conduction on the high voltage output. A logic high on $N_{\rm IN}$ will turn the high voltage P-Channel on and the N-Channel off. The high voltage outputs have pulse by pulse over current protection set by two external sense resistors. Nominal PWM logic input frequency is 100KHz.

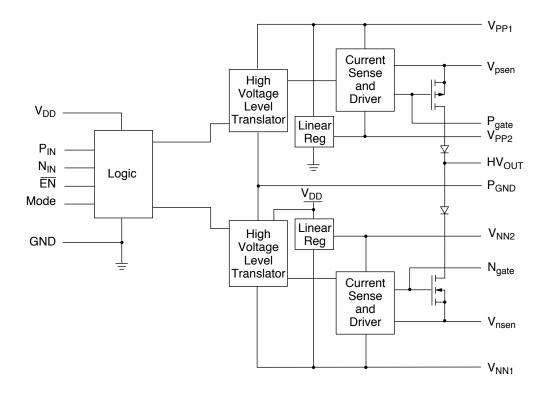
Pin Configuration

Electrical Characteristics

(Over operating supply voltage unless otherwise specified, $T_A = 25$ °C.)

Symbol	Parameters	Min	Тур	Max	Unit	Conditions
V _{PP1}	High voltage positive supply	15		110	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
V _{PP2}	Positive linear regulator output voltage	V _{PP1} - 9.9		V _{PP1} -19.1	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
V _{NN1}	High voltage negative supply	V _{PP1} - 220		-110	V	$T_A = -40$ °C to +85°C
V _{NN2}	Negative linear regulator output voltage	V _{NN1} + 5.6		V _{NN1} + 10.5	٧	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
V_{DD}	Logic supply voltage	4.5		5.5	V	$T_A = -40$ °C to $+85$ °C
I _{PP1Q}	V _{PP1} quiescent current		250	400	μΑ	$P_{IN} = N_{IN} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$
I _{NN1Q}	V _{NN1} quiescent current		250	550	μΑ	$P_{IN} = N_{IN} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$
I _{DDQ}	V _{DD1} quiescent current			10	μΑ	$P_{IN} = N_{IN} = 0V$
I _{PP1}	V _{PP1} operating current			1.7	mA	No load, V_{OUTP} and V_{OUTN} switching at 100KHz, $T_A = -40^{\circ}C$ to $+85^{\circ}C$
I _{NN1}	V _{NN1} operating current			1.9	mA	No load, V_{OUTP} and V_{OUTN} switching at 100KHz, $T_A = -40$ °C to $+85$ °C
I _{DD}	V _{DD} operating current			1.0	mA	
I _{IL}	Mode logic input low current		25		μΑ	Mode = 0V
V _{IL}	Logic input low voltage	0		1.0	V	$V_{DD} = 5.0V$
V _{IH}	Logic input high voltage	4.0		5.0	V	$V_{DD} = 5.0V$

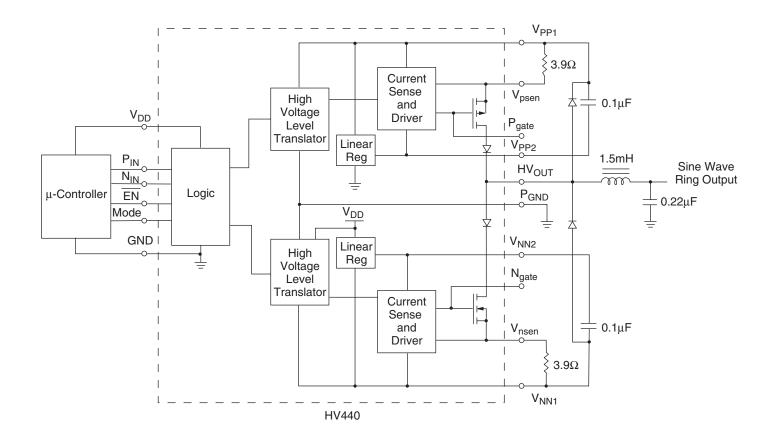
High Voltage Output


Symbol	Parameters	Min	Тур	Max	Unit	Conditions
R _{SOURCE}	V _{OUT} P source resistance		60	80	Ω	I _{OUT} = 100mA
R _{SINK}	V _{OUT} P sink resistance		60	80	Ω	I _{OUT} = -100mA
ΔR/ΔΤ	Change in source/sink resistance over temperature		0.33		Ω/°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
t _{d(ON)}	HV _{OUT} delay time		150		ns	P _{IN} = high to low, Mode = high
t _{rise}	HV _{OUT} rise time			50	ns	P _{IN} = high to low
t _{d(OFF)}	HV _{OUT} delay time		200		ns	N_{IN} = low to high, Mode = high
t _{fall}	HV _{OUT} fall time			50	ns	N _{IN} = low to high
t _{db}	Logic deadband time			200	ns	Mode = low
V _{psen}	HV _{OUT} current source sense voltage	V _{PP1} -0.75	V _{PP1} -1.00	V _{PP1} - 1.25	٧	
		V _{PP1} -0.67		V _{PP1} -1.31		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
V _{nsen}	HV _{OUT} current sink sense voltage	V _{NN1} + 0.75	V _{NN1} + 1.00	V _{NN1} + 1.25	٧	
		V _{NN1} + 0.65		V _{NN1} + 1.33		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
t _{shortP}	HV _{OUT} off delay time when current source sense is activated			100	ns	
t _{shortN}	HV _{OUT} off time when current sink sense is activated			100	ns	
t _{WHOUT}	Minimum pulse width for HV_{OUT} at V_{PP1}			500	ns	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
t _{WLOUT}	Minimum pulse width for HV_{OUT} at V_{NN1}			500	ns	$T_A = -40$ °C to $+85$ °C

Truth Table

N _{IN}	P _{IN}	Mode	EN	HV _{out}
L	L	Н	L	V _{PP1}
L	Н	Н	L	High Z
H*	L*	Н	L	_
Н	Н	Н	L	V _{NN1}
L	Х	L	L	V _{NN1}
Н	Х	L	L	V_{PP1}
Х	Х	Х	Н	High Z

^{*}This state will short $\mathbf{V}_{_{\mathrm{PP1}}}$ to $\mathbf{V}_{_{\mathrm{NN1}}}$ and should therefore be avoided.


Block Diagram

Pin Description

V _{PP1}	Positive high voltage supply.
V _{PP2}	Positive gate voltage supply. Generated by an internal linear regulator. A $0.1\mu F$ capacitor should be connected between V_{PP2} and V_{PP1} .
V _{NN1}	Negative high voltage supply.
V _{NN2}	Negative gate voltage supply. Generated by an internal linear regulator. A $0.1\mu F$ capacitor should be connected between V_{NN2} and V_{NN1} .
V_{DD}	Logic supply voltage.
GND	Low voltage ground.
PGND	High voltage power ground.
P _{IN}	Logic control input. When mode is high, logic input high turns OFF output high voltage P-Channel.
N _{IN}	Logic control input. When mode is high, logic input high turns ON output high voltage N-Channel.
EN	Logic enable bar input. Logic low enables IC.
Mode	Logic mode input. Logic low activates 200nsec deadband. When mode is low, N_{IN} turns on and off the high voltage N- and P-Channels. Pin is not used and should be connected to V_{DD} or ground.
HV _{OUT}	High voltage output. Voltage swings from V _{PP1} to V _{NN1} .
V _{psen}	Pulse by pulse over current sensing for P-Channel MOSFET.
V _{nsen}	Pulse by pulse over current sensing for N-Channel MOSFET.
P _{gate}	Gate drive for external P-channel MOSFET.
N _{gate}	Gate drive for external N-channel MOSFET.

Typical Application Circuit

