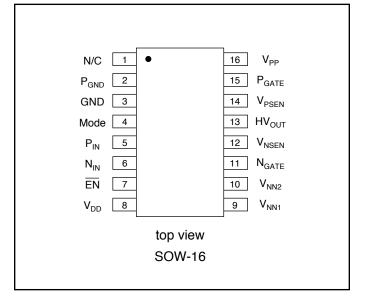
High-Voltage Ring Generator

Ordering Information

Operating Voltage	Package Options		
V _{NN1}	SOW-16		
-220V	HV450WG		

Features

- Integrated high voltage transistors
- 67V_{RMS} ring signal
- Output over current protection
- Can drive external MOSFETs for larger loads


Applications

- High voltage ring generator
- □ Set-top/Street box ring generator
- D Pair gain ring generator

General Description

The Supertex HV450 is a PWM high voltage ring generator. The high voltage output P- and N-channel transistors are controlled independently by the logic inputs P_{IN} and N_{IN}. For application where a single control pin (N_{IN}) is desired, the mode pin should be connected to Gnd. This adds a 200ns deadband on the control logic to avoid cross conduction on the high voltage output. A logic high on N_{IN} will turn the high voltage P-Channel on and the N-Channel off. The outputs can drive up to 5 RENs. The HV450 can drive external MOSFETs for applications requiring larger loads. The IC can be powered down by connecting the enable pin to V_{DD}. The high voltage outputs have pulse by pulse over current protection.

Pin Configuration

V_{NN2}, N-channel gate voltage supply V_{DD}, logic supply

Absolute Maximum Ratings*

Storage temperature
Power dissipation

V_{NN1}, power supply voltage

V_{PP}, P-channel gate voltage supply

* All voltages referenced to ground

12/13/01

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

-240V

-20V

+7.5V

600mW

V_{NN1}+20V

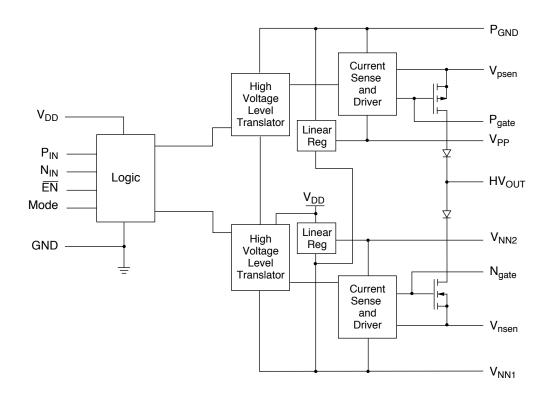
-65°C to +150°C

Electrical Characteristics

(Over operating supply voltages unless otherwise specified, T_{A} = -40 $^{\circ}C$ to +85 $^{\circ}C.)$

Symbol	Parameters	Min	Тур	Max	Unit	Conditions
V _{PP}	P-channel linear regulator output voltage	-10		-18	V	
V _{NN1}	High voltage negative supply	- 220		-110	V	
V _{NN2}	Negative linear regulator output voltage	V _{NN1} + 6.0		V _{NN1} + 10.0	V	
V _{DD}	Logic supply voltage	4.5		5.5	V	
I _{NN1Q}	V _{NN1} quiescent current		300	500		$P_{IN} = N_{IN} = \overline{EN} = L$
				25	μA	$P_{IN} = N_{IN} = L, \overline{EN} = H$
I _{DDQ}	V _{DD1} quiescent current		90	200	μΑ	$P_{IN} = N_{IN} = \overline{EN} = L$
			35	100		$P_{IN} = N_{IN} = L, \overline{EN} = H$
I _{NN1}	V _{NN1} operating current		1.4		mA	No load, V_{OUTP} and V_{OUTN} switching at 100KHz
I _{DD}	V _{DD} operating current			1.0	mA	
I	Mode logic input low current		25		μΑ	Mode = 0V
V _{IL}	Logic input low voltage	0		1.0	V	$V_{DD} = 5.0 V$
V _{IH}	Logic input high voltage	4.0		5.0	V	$V_{DD} = 5.0 V$

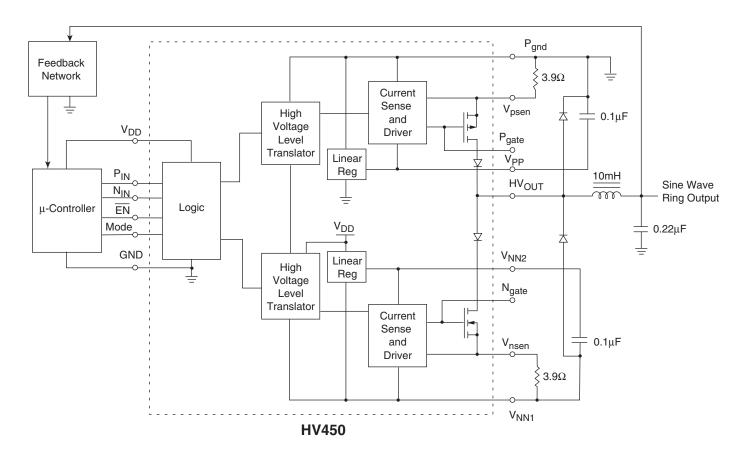
High Voltage Output


Symbol	Parameters	Min	Тур	Max	Unit	Conditions
R _{SOURCE}	V _{OUT} P source resistance		65		Ω	I _{OUT} = 100mA
R _{SINK}	V _{OUT} P sink resistance		65		Ω	I _{OUT} = -100mA
t _{d(ON)}	HV _{OUT} delay time		150		ns	P_{IN} = high to low, Mode = high
t _{rise}	HV _{OUT} rise time		50		ns	P _{IN} = high to low
t _{d(OFF)}	HV _{OUT} delay time		200		ns	N_{IN} = low to high, Mode = high
t _{fall}	HV _{OUT} fall time		50		ns	N _{IN} = low to high
t _{db}	Logic deadband time		250		ns	Mode = low
V _{psen}	HV _{OUT} current source sense voltage	-1.2		-0.8	V	
V _{nsen}	$\mathrm{HV}_{\mathrm{OUT}}$ current sink sense voltage	V _{NN1} + 0.8		V _{NN1} + 1.2	V	
t _{shortP}	HV _{OUT} off delay time when current source sense is activiated		70	150	ns	
t _{shortN}	HV _{OUT} off delay time when current sink sense is activated		70	150	ns	
t _{whout}	Minimum pulse width for $\mathrm{HV}_{\mathrm{OUT}}$ at $\mathrm{P}_{\mathrm{GND}}$			500	ns	
t _{wlout}	Minimum pulse width for $\mathrm{HV}_{\mathrm{OUT}}$ at $\mathrm{V}_{\mathrm{NN1}}$			500	ns	

Truth Table

N _{IN}	P _{IN}	Mode	EN	HV _{OUT}
L	L	Н	L	Pgnd
L	Н	Н	L	High Z
H*	L*	Н	L	*
Н	Н	Н	L	V _{NN1}
L	Х	L	L	V _{NN1}
Н	Х	L	L	Pgnd
Х	Х	Х	Н	High Z

*This state will short $\mathrm{V}_{_{\mathrm{NN1}}}$ to Pgnd and should therefore be avoided.


Block Diagram

Pin Description

V _{PP}	P-channel gate voltage supply. Generated by an internal linear regulator. A 0.1μ F capacitor should be connected between P_{GND} and V_{PP} .
V _{NN1}	Negative high voltage supply.
V _{NN2}	N-channel gate voltage supply. Generated by an internal linear regulator. A $0.1\mu F$ capacitor should be connected between V_{NN2} and $V_{NN1}.$
V _{DD}	Logic supply voltage.
GND	Low voltage ground.
P _{GND}	High voltage power ground.
P _{IN}	Logic control input. When mode is high, logic input high turns OFF output high voltage P-Channel.
N _{IN}	Logic control input. When mode is high, logic input high turns ON output high voltage N-Channel.
EN	Logic enable input. Logic low enables IC.
Mode	Logic mode input. Logic low activates 200nsec deadband. When mode is low, N_{IN} turns on and off the high voltage N- and P-Channels. Pin is not used and should be connected to V_{DD} or ground.
HV _{OUT}	High voltage output. Voltage swings from P_{GND} to V_{NN1} .
V _{psen}	Pulse by pulse over current sensing for P-Channel MOSFET.
V _{nsen}	Pulse by pulse over current sensing for N-Channel MOSFET.
P _{gate}	Gate drive for external P-channel MOSFET.
N _{gate}	Gate drive for external N-channel MOSFET.

Typical Application Circuit

12/13/010

©2001 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.