Intel[®] i960[®] RM/RN/RS I/O Processor

Specification Update

September 4, 2001

Notice: The 80960RM/RN/RS processor may contain design defects or errors known as errata. Characterized errata that may cause the product's behavior to deviate from published specifications are documented in this specification update.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Other brands and names are the property of their respective owners.

int_el_® Contents

Revision History	5
Preface	7
Summary Table of Changes	8
Identification Information	14
Errata	17
Specification Changes	23
Specification Clarifications	25
Documentation Changes	28

This Page Intentionally Left Blank

I

Revision History

Date	Version	Description
08/22/01	020	Added Document Changes 71 through 73.
04\04\01	019	Added Document Change 70.
02/2004	040	Revised Document Change 59.
03/2001	018	Added Document Changes 67, 68 and 69.
		Added Document Change #66.
06/27/00	017	Revised "Device ID Registers" on page 15, changed Bridge and ATU C-0 stepping values.
05/10/00	016	Modified Documentation Changes #8, #50, #55, #56, #59, #60, #61, #62 and #63 (Design Guide and Datasheet revised to include previous Documentation Changes).
		Added Documentation Changes #64 and #65.
		Added Errata #14.
		Added Document Changes #57, #58, #59, #60, #61, #62 and #63.
04/04/00	015	Removed Document Change #6, duplicate of #7.
		Changed Document Change #7 to #6. Covered same issue as old #6, but text gives clearer explanation.
3/15/00	014	Modified and added data to the Die Details table.
5/15/00	014	Added Documentation changes #53, #54, #55, and #56.
2/04/00	013	Corrected stepping information in the <i>Summary Table of Changes</i> section. Added "C-0" stepping and marked Specification Changes #12 and 13 for this stepping only.
	012	Added Topside Markings for the i960 [®] RS I/O processor.
		Added information to the Die Details table.
		Added information to the Device ID Registers table.
1/17/00		Added Specification Change #12, 13.
		Added Documentation Changes #51, #52.
		Removed documentation changes referencing changes to the <i>i960[®] RM I/O Processor Datasheet</i> and the <i>i960[®] RN I/O Processor Datasheet</i> . These changes were incorporated into the datasheets.
		Added Errata #11, 12, 13.
		Added Specification Change #10, 11.
12/08/99	011	Added Documentation Changes #46, #47, #48, #49, #50.
12/00/00		Removed documentation changes referencing the schematics in the <i>i960[®] RM/RN I/O Processor Design Guide</i> ; these changes were previously incorporated into the document.
		Added Specification Change #9.
8/11/99	010	Modified Documentation Change #12.
		Added Documentation Changes#41, #42, #43, #44, #45.
		Modified Specification Change #7.
7/14/99	009	Added Specification Change #8.
		Added Documentation Changes #39 and #40.
6/7/99	008	Added Documentation Change #38.
		Added Die Details table under Markings section.
E/10/00	007	Added Errata #10.
5/18/99	007	Added Specification Change #7.
		Added Documentation Change #37.

Date	Version	Description
		Added the following Specification Changes: #5 and #6,
04/09/99	006	Modified the following Specification Changes: #1, #2, #3 and #4,
		Added the following Documentation Changes: #8 through #36.
03/11/00	005	Added Specification Change #4.
03/11/99	005	Added Specification Clarification #3.
02/23/99	004	Added the following Errata: #9.
		Modified the following Errata: #7.
		Modified the following Specification Clarifications: #1, #2.
		Added the following Documentation Changes: #2, through #6.
	003	Added the following Errata: #7 and #8.
01/20/99		Added the following Specification Changes: #1 through #3.
		Added the following Documentation Change: #1.
01/13/99	002	Added the following Specification Clarifications: #1 and #2.
8/98	001	This is the new Specification Update document. It contains all identified errata published prior to this date.

int_el_® Preface

This document is an update to the specifications contained in the Affected Documents/Related Documents table below. This document is a compilation of device and documentation errata, specification clarifications and changes. It is intended for hardware system manufacturers and software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Title	Order #
i960 [®] RM/RN I/O Processor Developer's Manual	273158
80960RM I/O Processor Data Sheet	273156
80960RN I/O Processor Data Sheet	273157
i960 [®] RM/RN I/O Processor Design Guide	273139

Nomenclature

Errata are design defects or errors. These may cause the Intel[®] i960[®] RM/RN/RS I/O Processor's behavior to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These changes will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a specification's impact to a complex design situation. These clarifications will be incorporated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product's lifecycle, or until a particular stepping is no longer commercially available. Under these circumstances, errata removed from the specification update are archived and available upon request. Specification changes, specification clarifications and documentation changes are removed from the specification update when the appropriate changes are made to the appropriate product specification or user documentation (datasheets, manuals, etc.).

Summary Table of Changes

The following table indicates the errata, specification changes, specification clarifications, or documentation changes which apply to the Intel[®] i960[®] RM/RN/RS I/O Processor product. Intel may fix some of the errata in a future stepping of the component, and account for the other outstanding issues through documentation or specification changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X:	Errata exists in the stepping indicated. Specification Change or Clarification that applies to this stepping.
(No mark)	
or (Blank box):	This erratum is fixed in listed stepping or specification change does not apply to listed stepping.

Page

(Page):	Page location of item in this document
	0

Status

Doc:	Document change or update will be implemented.
Fix:	This erratum is intended to be fixed in a future step of the component.
Fixed:	This erratum has been previously fixed.
NoFix:	There are no plans to fix this erratum.
Eval:	Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the document.

Errata

No	Steppings		Steppings Base Status		Ctoture	Frank
NO.	A-0	B-0	C-0	Page	Status	Errata
1	х	х	х	16	NoFix	The ATU Discard Timer Status Bit in ATUCR Gets Set Even Though Delayed Read/Write Completes Before Discard Timer Expires
2	х	х	х	16	NoFix	A Target Abort Occurs on the Internal Bus when Target Abort Passing from the Internal Bus to the PCI Buses through the ATUs is Disabled
3	х	х	х	17	NoFix	After Initialization, Changing the Configuration Cycle Retry Bit in the EBCR to Retry Configuration Cycles while they are Occurring can Cause Data Corruption
4	х	Х	х	17	NoFix	A Target Abort from the Internal Bus may be Reported to the PCI Bus, Without the Target Abort Being Returned
5	х	х	х	17	NoFix	Secondary Interrupts are Routed to the Core Processor, Rather than the Primary PCI Bus, as their Default
6	х	х	х	18	NoFix	Secondary IDSEL Select Register (SISR) Bits are in Reverse Order
7	х			19	Fixed	Data Corruption Occurs when Transfer Data Value Matches the Memory Mapped Register (MMR) Addresses of the DMA Channels
						The four case illustrations on page 19 have been changed.
8	х			20	Fixed	Data Corruption Occurs when Transfer Data Value Matches the Memory Mapped Register (MMR) Addresses of the Application Accelerator Unit
9	х			21	Fixed	In battery backup mode, data corruption occurs if a write to SDRAM is coincident with the assertion of P_RST#
10	х	Х	х	21	NoFix	The Primary ATU (PATU) will, under certain circumstances, do Slow Decode Timing
11	х	х	х	21	NoFix	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used
12	х	Х	х	21	NoFix	$I^{2}C$ Busy Bit in ISR (0x1684) Is Active Only When $I^{2}C$ Unit is Enabled
13	х	х	х	22	NoFix	Single-bit and Multi-bit Error Reporting Cannot Be Individually Enabled by ECC Control Register
13	х	х	х	22	NoFix	Single-bit and Multi-bit Error Reporting Cannot Be Individually Enabled by ECC Control Register
14	х	х	х	22	NoFix	A 32-bit ATU Write, When Retried, Always Will Retry as a 64-bit Write.

Specification Changes

No	S	Steppings		Domo Status		
NO.	A-0	B-0	C-0	Page	Sidius	Specification Changes
1		х		23	Fixed	Default Value of the Memory Controller's Refresh Frequency Register (RFR)
2		х		23	Fixed	Resetting the Memory Controller's SDRAM Output Buffers during the Power-Fail Sequence
3		х		23	Fixed	PCI-to-PCI Bridge Configuration Registers: Bridge Subsystem Vendor ID Register (BSVIR) and Bridge Subsystem ID Register (BSIR)
4	Х	Х		23	Fixed	PCI Local Bus Specification, Revision 2.2
5.		х		23	Fixed	PCI Bus Power Management Interface Specification, Revision 1.1
6.		х		23	Fixed	Advanced Configuration and Power Interface Specification, Revision 1.0 (ACPI)
7.		х		23	Fixed	Default Value of the Primary Inbound ATU Limit Register (PIALR)
8.		Х		24	Fixed	CompactPCI Hot Swap Specification, Revision 1.0
9.		Х		24	Fixed	PCI-to-PCI Bridge Architecture Specification, Revision 1.1
10.		Х		24	Fixed	128Mbit SDRAM Support
11.		Х		24	Fixed	New Spec: (T _{LOCK}) for 80960RM/RN Internal PLL
12.			Х	24	Fixed	Support for 3.3 Volt PCI Signalling
13.			Х	24	Fixed	Summary of 80960RS

Specification Clarifications

No	Steppings		Page	Status	Specification Clarifications	
NO.	A-0	B-0	C-0	raye Status	Status	Specification clarifications
1	х			25	Doc	Hooking up the SDRAM Clock Enable Inputs on the SDRAM DIMM for Non- Battery-Backup Applications
2	х			25	Doc	Hooking up the SDRAM Clock Enable Outputs (SCKE0 and SCKE1) from the i960 [®] RM/RN I/O Processor to the Clock Enable Inputs on the SDRAM DIMM in a Battery-Backup Application
3	Х	Х	Х	25	Doc	HALT Mode is Not Supported

Documentation Changes

No.	Document Revision	Page	Status	Documentation Changes
1	273158-001 28 Doc		Doc	Section 12.3.1 of the i960 [®] RM/RN I/O Processor Developer's Manual
2	273158-001	28	Doc	Section 8.5.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
3	273158-001	29	Doc	Section 13.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
4	273158-001	29	Doc	Section 13.5.1 of the i960 [®] RM/RN I/O Processor Developer's Manual
5	273158-001	29	Doc	Section 15.1 of the i960 [®] RM/RN I/O Processor Developer's Manual
6	273158-001	30	Doc	Section 15.2.1.2 of the i960 [®] RM/RN I/O Processor Developer's Manual
7	273158-001	30	Doc	Section 11.3.1.3 of the i960 [®] RM/RN I/O Processor Developer's Manual
8	273139-001	30	Revised	Section 4.2.2 of the i960 [®] RM/RN I/O Processor Design Guide
9	273158-001	30	Doc	Documentation change in the i960 [®] RM/RN I/O Processor Developer's Manual
10	273158-001	30	Doc	Section 14.15 in the i960 [®] RM/RN I/O Processor Developer's Manual
11	273158-001	31	Doc	Section 14.15 in the i960 [®] RM/RN I/O Processor Developer's Manual
12	273158-001	32	Doc	Section 14.15 in the i960 [®] RM/RN I/O Processor Developer's Manual
13	273158-001	33	Doc	Section 14.15 in the i960 [®] RM/RN I/O Processor Developer's Manual
14	273158-001	33	Doc	Section 14.15 in the i960 [®] RM/RN I/O Processor Developer's Manual
15	273158-001	35	Doc	Section 14.15.4 in the i960 [®] RM/RN I/O Processor Developer's Manual
16	273158-001	36	Doc	Section 14.15.21 in the i960 [®] RM/RN I/O Processor Developer's Manual
17	273158-001	36	Doc	Section 14.15.22 in the i960 [®] RM/RN I/O Processor Developer's Manual
18	273158-001	36	Doc	Section 14.15.22 in the i960 [®] RM/RN I/O Processor Developer's Manual
19	273158-001	36	Doc	Section 14.15.24 of the i960 [®] RM/RN I/O Processor Developer's Manual
20	273158-001	37	Doc	Section 14.15.26 of the i960 [®] RM/RN I/O Processor Developer's Manual
21	273158-001	38	Doc	Section 14.15.34 of the i960 [®] RM/RN I/O Processor Developer's Manual
22	273158-001	40	Doc	Section 14.15.34 of the i960 [®] RM/RN I/O Processor Developer's Manual
23	273158-001	41	Doc	Section 14.15.34 of the i960 [®] RM/RN I/O Processor Developer's Manual
24	273158-001	42	Doc	Section 14.15.34 of the i960 [®] RM/RN I/O Processor Developer's Manual

Documentation Changes

No.	Document Revision	Page	Status	Documentation Changes
25	273158-001	43	Doc	Section 15.7 of the i960 [®] RM/RN I/O Processor Developer's Manual
26	273158-001	43	Doc	Section 15.7 of the i960 [®] RM/RN I/O Processor Developer's Manual
27	273158-001	44	Doc	Section 15.7 of the i960 [®] RM/RN I/O Processor Developer's Manual
28	273158-001	46	Doc	Section 15.7 of the i960 [®] RM/RN I/O Processor Developer's Manual
29	273158-001	47	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
30	273158-001	49	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
31	273158-001	50	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
32	273158-001	51	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
33	273158-001	52	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
34	273158-001	53	Doc	Section 15.7.4 of the i960 [®] RM/RN I/O Processor Developer's Manual
35	273158-001	54	Doc	Section 15.7.34 of the i960 [®] RM/RN I/O Processor Developer's Manual
36	273158-001	56	Doc	Section 15.7.44 of the i960 [®] RM/RN I/O Processor Developer's Manual
37	273158-001	57	Doc	Section 15.7.20, Table 15-49
38	273158-001	57	Doc	Section 15.7 of the i960 [®] RM/RN I/O Processor Developer's Manual
39	273158-001	58	Doc	Section 3.5.1, page 3-11
40	273158-001	58	Doc	Section 13.2.3, page 13-8
41	273158-001	58	Doc	Section 12.3.1, page 12-4
42	273158-001	58	Doc	Section 11.2.8, page 11-5
43	273158-001	58	Doc	Section 14.15 Bridge Configuration Header Bottom Address Offset 60H
44	273158-001	59	Doc	Power Management Control/Status Register - PMCSR (address 106C)
45	273158-001	60	Doc	PMCSR PCI to PCI Bridge Support - PMCSR_BSE
46	273158-001	61	Doc	128Mbit SDRAM Technology
47	273158-001	61	Doc	64 Bit Operation
48	273158-001	62	Doc	Scrubbing
49	273158-001	64	Doc	I ² C Reset Condition/Lockup
50	273139-001	64	Revised	New PCI Clock Buffer
51	273158-001	64	Doc	Section 13.6.4 SDRAM Boundary Register 0 - SBR0
52	273158-001	64	Doc	Section 13.6.5 SDRAM Boundary Register 1- SBR1
53	273158-001	64	Doc	Section 13.2.3 Flash Write Cycle (pg 13-8)

Documentation Changes

No.	Document Revision	Page	Status	Documentation Changes
54	273158-001	64	Doc	Section 11.5 Device Identification on Reset
55	273139-001	65	Revised	Table 21, line 7, Symbol "V _{OH1} ", Notes Section Next to I _{OH} = -200uA (3) Add Note (6)
56	273139-001	65	Revised	Section 5.0, pg 54, Last Sentence of the First Paragraph
57	273158-001	65	Doc	Section 13.4.1.2, System Assumptions
58	273158-001	65	Doc	Section 13.4.1.2, System Assumptions
59	273139-001	65	Revised	Section 8.0, Table 8-12, 80960RM Signals Requiring Pull-Up/Down Resistors
60	273139-001	65	Revised	Section 9.5, VCCPLL Pins Requirement
61	273139-001	65	Revised	Section 10.2, Bulk Decoupling Capacitance
62	273139-001	66	Revised	Section 14.1, Thermal Recommendations
63	273156-004 273157-004 273328-001	66	Revised	Section 4.3, VCCPLL Pins Requirement
64	273158-001	66	Doc	Section 14.15.2 of the i960 [®] RM/RN I/O Processor Developer's Manual
65	273158-001	67	Doc	Section 15.7.2 of the i960 [®] RM/RN I/O Processor Developer's Manual
66	273158-001	67	Doc	Section 12.2.2 Bus Control Register - BCON of the i960 [®] RM/RN I/O Processor Developer's Manual
67	273158-001	68	Doc	Section 7.0 of the i960 [®] RM/RN I/O Processor Design Guide
68	273158-001	68	Doc	Section 8.0 of the i960 [®] RM/RN I/O Processor Design Guide
69	273158-001	68	Doc	Section 8.0, Table 8-12. of the i960 [®] RM/RN I/O Processor Design Guide
70	273158-001	68	Doc	Section 11.3.1.5 FAIL# Code of the i960 [®] RM/RN I/O Processor Developer's Manual
71	273158-001	68	Doc	Table 13-13, page 13-31 of the i960® RM/RN I/O Processor Developer's Manual
72	273158-001	68	Doc	Section 13.3.7.3 of the i960® RM/RN I/O Processor Developer's Manual
73	273158-001	68	Doc	Section 13.3.7.3 of the i960® RM/RN I/O Processor Developer's Manual

Identification Information

Markings

Topside Markings

Die Details

Part Number	Stepping	QDF/ Spec Number	Voltage (V)	i960® Core Processor Speed (MHz)	Notes
GC80960RN100	A-0	Q 120	3.3	100	Samples - limited testing
GC80960RM100	A-0	Q 121	3.3	100	Samples - limited testing
GC80960RN100	A-0	SL37Y	3.3	100	Production*
GC80960RN100	A-0	SL3FM	3.3	100	Production*
GC80960RM100	A-0	SL39Q	3.3	100	Production*
GC80960RN100	B-0	Q 136	3.3	100	Samples - limited testing
GC80960RM100	B-0	Q 137	3.3	100	Samples - limited testing
GC80960RN100	B-0	Q 126	3.3	100	Samples - limited testing
GC80960RM100	B-0	Q 127	3.3	100	Samples - limited testing
GC80960RN100	B-0	SL3G6	3.3	100	Production*
GC80960RM100	B-0	SL3G7	3.3	100	Production*
GC80960RM100	C-0	Q173	3.3	100	Samples - limited testing
GC80960RM100	C-0	Q162	3.3	100	Samples - limited testing
GC80960RN100	C-0	Q160	3.3	100	Samples - limited testing
GC80960RN100	C-0	Q161	3.3	100	Samples - limited testing
GC80960RS100	C-0	Q174	3.3	100	Samples - limited testing
GC80960RM100	C-0	SL3YZ	3.3	100	Production
GC80960RN100	C-0	SL3YW	3.3	100	Production
GC80960RS100	C-0	SL3ZJ	3.3	100	Production

Note: For A-0 and B-0 step RM and RN, the S-spec was not printed on the die.

Device ID Registers

Device and Stepping	Processor Device ID Register (PDIDR - 0x1710)	PCI-to-PCI Bridge Unit Revision ID (RIDR - 0x1008)	Address Translation Unit Revision ID Register (ATURID - 0x1208)	i960 [®] Core Processor Device ID (DEVICEID - 0xFF00 8710)	
80960RM A-0	08863013	0x0	0x0	00823013	
80960RN A-0	08862013	0x0	0x0	00823013	
80960RM B-0	18863013	0x01	0x01	00823013	
80960RN B-0	18862013	0x01	0x01	00823013	
80960RM C-0	28863013	0x02	0x02	00823013	
80960RN C-0	28862013	0x02	0x02	00823013	
80960RS C-0	28867013	0x02	0x02	00823013	
NOTE: The Processor ID registers for A-0 were incorrect in the Revision 5 of the <i>i</i> 960 [®] RM/RN I/O Processor Specification Update.					

Errata

1.	The ATU Discard Timer Status Bit in ATUCR Gets Set Even Though Delayed Read/Write Completes Before Discard Timer Expires				
Problem:	The ATU Discard Timer Status bit (bit 15, in the Address Translation Unit Configuration Register, local bus address 1288H) is getting set even though the transaction completed correctly. This scenario occurs when a single-word delayed read or write is completing on the PCI bus through either the primary ATU or the secondary ATU at the same time that the discard timer is timing out. This should not affect multi-word transactions, but should occur with all configuration reads and writes that line up with the discard timer time-out.				
Implication:	Although the discard timer time-out bit is being set, the transaction is completing properly, so the only implication here is the handling of any actions that occur as a result of the discard timer being set.				
Workaround:	Software that handles the discard timer status bit, should just reset the ATU Discard Timer Status bit (bit 15, in the Address Translation Unit Configuration Register, local bus address 1288H) in this scenario. The likelihood of seeing the problem is reduced if the timer value is set to 2^{15} .				
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.				
2.	A Target Abort Occurs on the Internal Bus when Target Abort Passing from the Internal Bus to the PCI Buses through the ATUs is Disabled				
Problem:	If a target abort occurs on the Internal Bus due to an ECC error, and target abort passing from the internal bus to the PCI busses is disabled, the ATU can deadlock when all the following conditions are true:				
	• The PCI master must be a 32-bit master				
	• The PCI master induces data-to-data wait states				
	• A target abort occurs on the internal bus				
	• The Primary (bit 0, in the Primary ATU Interrupt Mask Register, local bus address 12BCH) or Secondary (bit 0, in the Secondary ATU Interrupt Mask Register, local bus address 12C0H) ATU ECC Target Abort Enable bit is clear.				
Implication:	Under these conditions the relevant ATU will not pass the target abort back to the PCI master, and the ATU will enqueue subsequent read transactions, but will never return data. The discard timer will not rescue this case, since pointers have been corrupted.				
Workaround:	Always set The Primary ATU ECC Target Abort Enable bit (bit 0, in the Primary Interrupt Mask Register, local bus address 12BCH) and the Secondary ATU ECC Target Abort ENable bit (bit 0, in the Secondary Interrupt Mask Register, local bus address 12C0H) to allow the ATUs to pass the target abort back to the PCI master.				
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.				

3.	After Initialization, Changing the Configuration Cycle Retry Bit in the EBCR to Retry Configuration Cycles while they are Occurring can Cause Data Corruption			
Problem:	After initialization, if the Configuration Cycle Retry Bit (bit 2, in the Extended Bridge Configu- ration Register, local bus address 1040H) is changed to retry configurations cycles at the same time that a configuration read completion is starting on the primary PCI bus, the ATU will return data, but will not dequeue it.			
Implication:	Under the above conditions, if another read of the same address were to occur, the old, stale data in the queue would be returned to the master.			
Workaround:	Do not change the Configuration Cycle Retry Bit (bit 2, in the Extended Bridge Configuration Register, local bus address 1040H) after initialization.			
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.			
4.	A Target Abort from the Internal Bus may be Reported to the PCI Bus, Without the Target Abort Being Returned			
Problem:	If a target abort occurs on the internal bus before the 'primary' Memory Enable Bit (bit 1, in the Primary ATU Command Register, local bus address 1204H) is cleared, or the 'secondary' Memory Enable Bit (bit 1, in the Secondary ATU Command Register, local bus address 1298H) is cleared, the target abort will be reported incorrectly in the ATU error registers, when the transaction master aborts on the relevant PCI bus. Furthermore, the transaction will be dequeued.			
Implication:	If the memory enables are turned back on, the original target abort will be lost. Also, if enabled, this WILL generate an interrupt to the core.			
Workaround:	Ensure that the queues in the ATUs are cleared before changing the Memory Enable Bit (bit 1, in the Primary ATU Command Register, local bus address 1204H) or the Memory Enable Bit (bit 1, in the Secondary ATU Command Register, local bus address 1298H) after initialization.			
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.			
5.	Secondary Interrupts are Routed to the Core Processor, Rather than the Primary PCI Bus, as their Default			
Problem:	The secondary interrupts (S_INTA#, S_INTB#, S_INTC#, and S_INTD#) are routed to the 80960RM/RN core processor as their default. They should be routed to the primary PCI bus as their default.			
Implication:	When booting in configuration mode 0, cards located on the secondary PCI bus will have their interrupts routed to the i960 core processor and may not function correctly in the system.			
Workaround:	Boot the processor in Mode 3 (Default Mode), and set the S_INTA# Select Bit, S_INTB# Select Bit, S_INTC# Select Bit, and S_INTD# Select Bit (Bits 3:0, in the PCI Interrupt Routing Select Register, local bus address 1050H) in the initialization software. Then make sure to clear the Configuration Cycle Retry Bit (bit 2, in the Extended Bridge Control Register, local bus address 1040H) to allow the bridge and the ATU to accept configuration cycles. If the system must boot in mode 0, these bits can be modified by an external agent on the PCI bus by using PCI configuration cycles.			
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.			

6. Secondary IDSEL Select Register (SISR) Bits are in Reverse Order

Problem: The bits in the Secondary IDSEL Select Register (SISR) are in reverse order. Refer to Table "SISR Bit Mapping" on page 18 for the bit descriptions.

SISR Bit Mapping

Bit Number	Description
Bit 09	AD16 IDSEL Disable
Bit 08	AD17 IDSEL Disable
Bit 07	AD18 IDSEL Disable
Bit 06	AD19 IDSEL Disable
Bit 05	AD20 IDSEL Disable
Bit 04	AD21 IDSEL Disable
Bit 03	AD22 IDSEL Disable
Bit 02	AD23 IDSEL Disable
Bit 01	AD24 IDSEL Disable
Bit 00	AD25 IDSEL Disable

Implication: When private devices are being used on the secondary side and the SISR is programmed without taking the bit reversal into account, the private devices may not be hidden from the host. In addition, public devices may be hidden from the host.

Workaround: Program the SISR with the new bit mapping as described above.

Status: NoFix. See the Table "Summary Table of Changes" on page 8.

7. Data Corruption Occurs when Transfer Data Value Matches the Memory Mapped Register (MMR) Addresses of the DMA Channels

Problem: This problem appears across all 3 DMA channels: DMA Ch-0, Ch-1, and Ch-2. If the transfer data value falls within the MMR address range of the active DMA channel (1400H - 143FH for Ch-0, 1440H - 147FH for Ch-1, and 1480H - 14FFH for Ch-2), data corruption will occur.

Examples on page 19 describe the error condition.

Assumption: DMA channel 0 is used to transfer data from PCI to IOP memory.

Single Transaction on the Internal Bus

Implication:	Data corruption results when the data value matches the MMR address range of the active DMA channel.					
Workaround:	There are two possible workarounds for this errata:					
	• Use the Primary Address Translation Unit (PATU) to transfer data from Primary PCI to IOP memory and Secondary Address Translation Unit (SATU) to transfer data from Secondary PCI to IOP memory.					
	• Configure the Memory Controller Unit to execute in 32-bit mode. For further information, refer to Section 13.3.3 on page 13-14 of the <i>i960[®] RM/RN I/O Processor Developer's Manual</i> and to Table 4 in the 80960RM/RN I/O processor datasheets.					
Status:	Fixed. A change intended to fix this erratum was implemented in the B-0 stepping.					
8.	Data Corruption Occurs when Transfer Data Value Matches the Memory Mapped Register (MMR) Addresses of the Application Accelerator Unit					
Problem:	If the transfer data value falls within the MMR address range of the Application Accelerator Unit (1800H - 18FFH), data corruption will occur.					
Implication:	Data corruption results when the data value matches the MMR address range of the Application Accelerator Unit.					
Workaround:	There are two possible workarounds for this errata:					
	• Compute the XOR Parity calculation through software by using the i960 [®] JT processor.					
	• Configure the Memory Controller Unit to execute in 32-bit mode. For further information, refer to Section 13.3.3 on page 13-14 of the <i>i960</i> [®] <i>RM/RN I/O Processor Developer's Manual</i> and to Table 4 in the 80960RM/RN I/O processor datasheets.					
Status:	Fixed. A change intended to fix this erratum was implemented in the B-0 stepping.					

9.	In battery backup mode, data corruption occurs if a write to SDRAM is coincident with the assertion of P_RST#		
Problem:	When operating the RM/RN in battery backup mode, the last qword of data will be corrupted if P_RST# is pulled while writing to SDRAM.		
Implication:	The last write into SDRAM contains corrupted data.		
Workaround:	A workaround may be possible but is application specific. This only affects customers that use battery backup memory (See Section 13.4, page 13-34 of the RM/RN Developer's Manual)		
Status:	Fixed. A change intended to fix this erratum was implemented in the B-0 stepping.		
10.	The Primary ATU (PATU) will, under certain circumstances, do Slow Decode Timing		
Problem:	In general, the primary ATU uses Medium decode timing. However, when the messaging unit is enabled and the inbound or outbound message ports are hit with a 64-bit access, the PATU will need to pre-decode the C/BE# bus. As a result, the PATU claims the access using slow decode timing. The <i>PCI Local Bus Specification</i> , Revision 2.2 requires this field of the PATUSR (bits 10:9) to indicate the slowest DEVSEL# timing possible.		
Implication:	If a subtractive decode agent is present on the PATUs bus segment and has been programmed to accept all slow decode transactions, there is a possibility of contention on the PCI bus between the subtractive decode agent and the PATU.		
Workaround:	Subtractive decode agents that share the PCI bus with the PCI primary bus interface of the i960 [®] RM/RN should not be programmed to claim transactions with slow decode timing.		
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.		
11.	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used		
11. Problem:	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly.		
11. Problem: Implication:	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge.		
11. Problem: Implication: Workaround:	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific.		
11. Problem: Implication: Workaround:	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are UsedIf a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly.The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific.This affects customers that use back-to-back exclusive accesses.		
11. Problem: Implication: Workaround: Status:	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are UsedIf a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly.The bridge will lock up, causing no further transactions across the bridge.A workaround may be possible but is application specific.This affects customers that use back-to-back exclusive accesses.NoFix. See the Table "Summary Table of Changes" on page 8.		
11. Problem: Implication: Workaround: Status: 12.	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific. This affects customers that use back-to-back exclusive accesses. NoFix. See the Table "Summary Table of Changes" on page 8. I ² C Busy Bit in ISR (0x1684) Is Active Only When I ² C Unit is Enabled		
 11. Problem: Implication: Workaround: Status: 12. Problem: 	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific. This affects customers that use back-to-back exclusive accesses. NoFix. See the Table "Summary Table of Changes" on page 8. I ² C Busy Bit in ISR (0x1684) Is Active Only When I ² C Unit is Enabled Bit 3 of the I ² C Status register (ISR) described in Table 22-10 of the <i>i960[®] RM/RN I/O Processor Developer's Manual</i> only gets updated when the I ² C unit is enabled on the i960 [®] RM/RN processor.		
 11. Problem: Implication: Workaround: Status: 12. Problem: Implication: 	Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific. This affects customers that use back-to-back exclusive accesses. NoFix. See the Table "Summary Table of Changes" on page 8. I ² C Busy Bit in ISR (0x1684) Is Active Only When I ² C Unit is Enabled Bit 3 of the I ² C Status register (ISR) described in Table 22-10 of the <i>i960[®] RM/RN I/O Processor Developer's Manual</i> only gets updated when the I ² C unit is enabled on the i960 [®] RM/RN processor or a potential lockup condition may occur on the I ² C bus. The I ² C busy bit was used as the method used to check the status of the I ² C bus. Since this is inactive when the I ² C unit is disabled, it is not a reliable gauge of the status of the I ² C bus.		
 11. Problem: Implication: Workaround: Status: 12. Problem: Implication: Workaround: 	 Potential Bridge Lockup Condition if Back to Back Exclusive Accesses are Used If a device on the primary PCI bus attempts to do two back-to-back exclusive accesses through the i960RM/RN processor, with an ATU/DMA transfer occurring immediately after the first exclusive access, the bridge may not unlock properly. The bridge will lock up, causing no further transactions across the bridge. A workaround may be possible but is application specific. This affects customers that use back-to-back exclusive accesses. NoFix. See the Table "Summary Table of Changes" on page 8. I²C Busy Bit in ISR (0x1684) Is Active Only When I²C Unit is Enabled Bit 3 of the I²C Status register (ISR) described in Table 22-10 of the <i>i960[®]</i> RM/RN <i>I/O Processor Developer's Manual</i> only gets updated when the I²C unit is enabled on the i960[®] RM/RN processor. The I²C bus must be idle before enabling the I²C unit on the i960[®] RM/RN processor or a potential lockup condition may occur on the I²C bus. The I²C busy bit was used as the method used to check the status of the I²C bus. Since this is inactive when the I²C unit is disabled, it is not a reliable gauge of the status of the I²C bus. The developer is advised to find another means of determining the status of the I²C bus, perhaps using external logic. 		

13.	Single-bit and Multi-bit Error Reporting Cannot Be Individually Enabled by ECC Control Register			
Problem:	The ECC Control Register ECCR is described as having the ability to select multi-bit error and/or single-bit error reporting (see Table 13-24 on page 13-50 of the <i>i960[®] RM/RN I/O Processor Developer's Manual</i>). However, the algorithm does not allow individual enabling; that is, the reporting is either on or off for both multi-bit and single bit error reporting.			
Implication:	The error reporting selection (enabled or disabled) will apply to both multi-bit and single-bit errors.			
Workaround:	There is no current workaround. If either the ECCR.0 bit or the ECCR.1 bit is selected for reporting, then both multi-bit and single-bit error reporting are enabled. If neither bit is selected for reporting, then both multi-bit and single-bit error reporting are disabled.			
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.			
14.	A 32-bit ATU Write, When Retried, Always Will Retry as a 64-bit Write.			
Problem:	A performance optimization in the 80960 RM/RN ATU sometimes causes a normal 64-bit write to be executed as two, 32-bit writes. If the first 32-bit write gets retried, it always will retry as a 64-bit write.			
Implication:	While there are no issues with this in practice, the PCI local bus specification states that all retries must be repeated exactly.			
Workaround:	None required.			
Status:	NoFix. See the Table "Summary Table of Changes" on page 8.			

Specification Changes

1.	Default Value of the Memory Controller's Refresh Frequency Register (RFR)
Issue:	The Refresh Frequency Register (RFR) will default to the value 00H. The desired value of the RFR will need to be specified during the SDRAM initialization sequence/routine.
Status:	Fixed. This change has been fixed in the B-0 stepping.
2.	Resetting the Memory Controller's SDRAM Output Buffers during the Power-Fail Sequence
Issue:	SDRAM output buffers will be reset to the default value (low-drive strength) after the power-fail sequence has executed with the current buffer strength configuration.
Status:	Fixed. This change has been fixed in the B-0 stepping.
3.	PCI-to-PCI Bridge Configuration Registers: Bridge Subsystem Vendor ID Register (BSVIR) and Bridge Subsystem ID Register (BSIR)
Issue:	To guarantee compliance with the PCI-to-PCI Bridge Architecture Specification Rev 1.0, the Bridge Subsystem Vendor ID Register (BSVIR@PCI configuration offset 34H) and the Bridge Subsystem ID Register (BSIR@PCI configuration offset 36H) will be specified to be reserved in the configuration address space. Configuration software should therefore not write to these reserved locations.
Status:	Fixed. This change has been fixed in the B-0 stepping.
4.	PCI Local Bus Specification, Revision 2.2
Issue:	The 80960RM/RN I/O processor is compliant with the PCI Local Bus Specification, Revision 2.2.
Status:	Fixed. This change has been fixed in the B-0 stepping.
5.	PCI Bus Power Management Interface Specification, Revision 1.1
Issue:	The 80960RM/RN B-0 stepping is compliant with the <i>PCI Bus Power Management Interface</i> Specification, Revision 1.1. See the Documentation section of this document and the ACPI Imple- mentation White paper for specific changes related to this compliance.
Status:	Fixed. This change has been fixed in the B-0 stepping.
6.	Advanced Configuration and Power Interface Specification, Revision 1.0 (ACPI)
Issue:	The 80960RM/RN I/O processor B-0 stepping is compliant with the <i>Advanced Configuration and Power Interface Specification, Revision 1.0 (ACPI).</i> See the Documentation section of this document and the <i>ACPI Implementation White paper</i> for specific changes related to this compliance.
Status:	Fixed. This change has been fixed in the B-0 stepping.
7.	Default Value of the Primary Inbound ATU Limit Register (PIALR)
Issue:	In the A-0 stepping of the i960 RM/RN I/O processor, the Primary ATU Limit Register (PIALR) had a default value of FFFFEH which corresponded to an inbound window of 8KB. To ease Flash programming, the ATU limit register was changed to a value of FF0000H which corresponds to a window of 16MB.
Status:	Fixed. This change has been fixed in the B-0 stepping.

int

8. CompactPCI Hot Swap Specification, Revision 1.0

- Issue: The i960 RM/RN I/O processor B-0 stepping meets the criteria to be considered a CompactPCI Hot Swap "capable" device.
- Status: Fixed. This change has been fixed in the B-O stepping.

9. PCI-to-PCI Bridge Architecture Specification, Revision 1.1

- **Issue:** The 80960 RM/RN I/O processor B-0 stepping is compliant with the *PCI-to-PCI Bridge Architecture Specification*, Revision 1.1.
- Status: Fixed. This change has been fixed in the B-O stepping.

10. 128Mbit SDRAM Support

- **Issue:** Table 13-6 of the i960 RM/RN I/O Processor Developer's Manual, lists the supported SDRAM configurations. The table only lists 16Mbit and 64Mbit SDRAM technology.
- Status: Fixed. The 80960 RM/RN (A and B steppings) will support 128 Mbit SDRAM with some qualifications. Refer to the spec update documentation changes section for specifics on using 128 Mbit SDRAM on the 80960 RM/RN.

11. New Spec: (T_{LOCK}) for 80960RM/RN Internal PLL

- **Issue:** A new specification, T_{LOCK} , is being added to the 80960 RM/RN data sheet. Table 4-6 of the PCI Local Bus Specification and the PCI Hot-Plug Specification states that $T_{RST-CLK}$ time, the time from a stable PCI clock to RST# going high should be a minimum of 100 us. If a board design intends to implement the minimum time, the 80960 RM/RN would have to lock its internal PLL in less than 100 us. In addition, since the 80960 RM/RN requires a clock buffer for secondary PCI clocks, the combined PLL lock times for the clock buffer and the 80960 RM/RN PLLs need to be less than 100 us. While current board/chip set designs typically have $T_{RST-CLK}$ times in the range of several hundred ms, specifically stating this specification may aid board designers for future designs.
- Status: Fixed. T_{LOCK} (max) for 80960RM/RN (A and B steppings) is specified at 65 us.

12. Support for 3.3 Volt PCI Signalling

- **Issue:** The C-X stepping of the 80960 RM/RN/RS now supports 3.3 Volt PCI signalling.
- Status: Fixed. This change has been implemented on the C-X steppings of the 80960 RM/RN/RS

13. Summary of 80960RS

- **Issue:** The C-X stepping of the 80960 RX silicon includes the 80960 RS. This new processor is a 32 bit PCI device, similar to the 80960 RM but without an application accelerator (AAU).
- **Status:** Fixed. This new processor will be introduced with the C-X stepping.

Specification Clarifications

1. Hooking up the SDRAM Clock Enable Inputs on the SDRAM DIMM for Non-Battery-Backup Applications

Problem: During the power-up reset sequence, as the RM/RN supply voltage ramps to 3.3 Volts, a glitch occurs on the Clock Enable pins (SCKE) to the SDRAM at around 2 Volts. Occasionally this causes the SDRAM to enter a pseudo, self-refresh mode which causes a lock-up condition on the SDRAM device. The only way to clear this condition is to power-down the SDRAM. The SDRAM initialization sequence will not clear the lock-up condition.

Workaround: Tie the Clock Enable Inputs on the SDRAM DIMM to V_{CC}.

- 2. Hooking up the SDRAM Clock Enable Outputs (SCKE0 and SCKE1) from the i960[®] RM/RN I/O Processor to the Clock Enable Inputs on the SDRAM DIMM in a Battery-Backup Application
- Problem: During the power-up reset sequence, as the RM/RN supply voltage ramps to 3.3 Volts, a glitch occurs on the Clock Enable pins (SCKE) to the SDRAM at around 2 Volts. Occasionally this causes the SDRAM to enter a pseudo, self-refresh mode which causes a lock-up condition on the SDRAM device. The only way to clear this condition is to power-down the SDRAM. The SDRAM initialization sequence will not clear the lock-up condition.
- **Workaround:** Ensure that the Clock Enable Inputs to the SDRAM DIMM are held low during power-up. An example workaround is shown in the following circuit schematics and was tested on the i960RM/RN evaluation boards (Sheet 6 80960RM schematics and Sheet 6 80960RN schematics in *i960*[®] *RM/RN I/O Processor Design Guide*).

3. HALT Mode is Not Supported

Issue: Although the product manual lists 'HALT' as a valid instruction, the 80960RM/RN I/O processor does not support HALT mode. HALT mode is not validated and tested, therefore, we cannot guarantee proper operation.

			-	c				<i>c</i>
-	-	N	~		٥	Q	<u> </u>	Тек. 00000844 Налик. SIZDAMI 100-9940 DMM REV_C Name. 111/100 Bowel 0 01 10 Н Н
0		M.20MI199 M.20MI199 OKOP 22 COST 22 M.2012	C NC1 1145 C NC1 1145	0632	0007 [54 0007 4 0008 [55 0009 4 0008 [55 0009 4 VCC7 [127 0009 4 VCC7 [107 0009 4 000 [59 0001 4 000 [109 0001 4 000 [101 0000 4 0000 [101 0000 4	CLIA (101) CLIA (CYCLORE MICROONTERIAS 25 SCENCE PARK NEW HAWEN, CT 00511
Ŀ		Comparison of the second	22213 22213 22213 22210 22213 22	0 0 0 0 0 0 0 0 0 0 0 0 0 0	SM4 111 SM5 111 SM5 111 SSE1 111 SSA5 111 SA4 111 SA5 111 SA5 111 SA5 111 SA5 111	23) <u>5840</u> 12246 <u>5841</u> 12260 <u>58411</u> 12240 07) DQ.61(03) <u>12240</u> 12240 07) DQ.61(03) <u>12240</u>		u
w		SECAN CONTINUES 0001 00000 0000 00000 0000 00000 00000 000000	Box HO HO State 100 100 100 252 1100 100 100 253 1100 100 100 263 1100 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 100 201 11000 000 1000 201 11000 000 100 201 11000 000 100 201	1 1 0.022 0.022 1 1 0.021 0.021 0.021 2 0.01 1 0.021 0.021 0.021 2 0.01 0.01 0.01 0.021 0.021 2 0.01 0.021 0.021 0.021 0.021 2 0.021 0.021 0.021 0.021 0.021 0.021 2 0.022 0.022 0.021 <td< td=""><td>24(0): 0000; 0000; 24(1): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 000; 000; 25(0): 000; 000; 25(0): 000; 000; 25(0): 000; 000;</td><td>34.0 Curcipation Decurcipation 34.1 Non-16 Non-16 Non-16 44.0 State State State 42.0 State State State</td><td></td><td>w</td></td<>	24(0): 0000; 0000; 24(1): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(2): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 0000; 0000; 25(0): 000; 000; 25(0): 000; 000; 25(0): 000; 000; 25(0): 000; 000;	34.0 Curcipation Decurcipation 34.1 Non-16 Non-16 Non-16 44.0 State State State 42.0 State State State		w
Q	RAMEV (81144.10) SERAM (93.05)	880 1980 1980 1980 1980	2020 1020 1020 1020 1020 1021 1020 1021 1021	2014 2019 2029 2029 2029 2029	810 1910 5559 5559 800 800	288.1 281.1 281.1 201.0 (0)		0
0	-		ស្វា ក្មេរ ទេស	(b) (t t) 13405				v
۵		:						Ø
~					2 00000 00000 00000 00000			<
	-	N	e	4	10	ø	~	

Documentation Changes

1. Section 12.3.1 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

The last sentence of the third paragraph has been changed to:

- Old: Logical Memory Mask register (LMMSK).
- New:
 - Logical Memory Mask register (LMMR).

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

2. Section 8.5.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: Table 8-21 has been changed to match errata #5 in this spec update. In the description column, the bits were swapped. See Table 8-21.

Table 8-21 PCI Interrupt Routing Select Register (PIRSR)

inte

3.	Section 13.4 of the <i>i960[®] RM/RN I/O Processor Developer's Manual</i>
Issue:	The note on page 13-34 has been removed.
Affected Docs:	i960 [®] RM/RN I/O Processor Developer's Manual
4.	Section 13.5.1 of the <i>i</i> 960 [®] <i>RM/RN I/O Processor Developer's Manual</i>

The second to last paragraph on page 13-40 ("ESTAT, ECARx...") has been removed. Issue:

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

Section 15.1 of the *i*960[®] RM/RN I/O Processor Developer's Manual 5.

Figure 15-2 on page 15-3 has been changed. The arrows in the box containing P_IRQ 128 Bytes Issue: have been reversed. See Figure 15-2.

Figure 15-2. ATU Queue Architecture Block Diagram

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

nt

6. Section 15.2.1.2 of the *i960[®] RM/RN I/O Processor Developer's Manual*

In the section describing "Data flow for the inbound write transaction on the internal bus..."

The first bulleted paragraph has been changed to:

• The ATU internal bus master requests the internal bus, when the IWQAD/IWQ contains the PCI address and data for the current transaction, which has crossed at least a 2 QWORD boundary or, a PCI address from an earlier posted PCI transaction has moved to the head of the IWQAD.

Affected Docs: i960® RM/RN I/O Processor Developer's Manual

7. Section 11.3.1.3 of the *i*960[®] RM/RN I/O Processor Developer's Manual

Issue: Figure 11-3 of the user's manual shows three cycle times that need to be updated for the 80960RM/RN processors. The following timings are approximations:

- Built-In Self-Test: ~138,000 cycles
- Built-In Self-Test Status: ~10 cycles
- 80960 Local Bus Confidence Test: ~44 cycles

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

8. Section 4.2.2 of the *i*960[®] *RM/RN I/O Processor Design Guide*

Issue:

Table 4-6 (pg. 13) has been changed to:

Manufacturer	Part Number
Cypress	CY2310NZPVC-1
Motorola	MPC9140SD
Pericom	P16C182
Pericom	P16C180V

Affected Docs: i960[®] RM/RN I/O Processor Design Guide

Status: Design Guide revised.

- 9. Documentation change in the *i*960[®] *RM/RN I/O Processor Developer's Manual*
- **Issue:** All references to PCI Local Bus specification, revision 2.1 have been changed to PCI Local Bus specification, revision 2.2.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

10. Section 14.1 in the *i*960[®] RM/RN I/O Processor Developer's Manual

Issue: Bullet numbers 1 and 3 have been changed.

Bullet 1 should read:

• "Full compliance to the PCI Local Bus Specification Revision 2.2"

Bullet 3 should read:

- Full Compliance to the PCI Bus Power Management Interface Specification Revision 1.1
 - Defines the PCI hardware support required by the Advanced Configuration and Power Interface Specification, Revision 1.0 initiative

11. Section 14.15 in the *i960[®] RM/RN I/O Processor Developer's Manual*

Issue: The following paragraph has been added between the 1st and 2nd paragraphs of the section:

The bridge has a 9 byte extended configuration space residing at configuration offset 68H that supports the Advanced Configuration and Power Interface Specification, Revision 1.0 by providing the Power Management registers defined by the *PCI Bus Power Management Interface Specification* Revision 1.1

12. Section 14.15 in the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Figure 14-11 should be replaced with the following changed figure. (Change is highlighted)

	PCI Address Offset		uration Header	Bridge Config	
	00H	ID	Vendor I	ID	Device
	04H	nmand	Primary Con	Status	Primary
	08H	Revision ID		ass Code	CI
	0CH	Cacheline Size	Primary Latency Timer	Header Type	Reserved
	10H				
	14H		rved	Rese	
PCI to PC Bridge	18H	Primary Bus Number	Secondary Bus Number	Subordinate Bus Number	Secondary atency Timer
	1CH	I/O BASE	I/O Limit	Status	Secondary S
	20H	Base	Memory B	Limit	Memory L
	24H	hable v Base	Prefetc Memory	hable [,] Limit	Prefetcl Memory
	28H				
	2CH		erved	Res	
	30H				
	34H	Capabilities Pointer	Reserved	ved	Reser
	38H		rved	Rese	
	3CH	rved	Reser	ontrol	Bridge Co
Î	40H	dge Control	Extended Bri	DSEL Control	Secondary II
	44H		nterrupt Status	Primary Bridge	
	48H		e Interrupt Status	Secondary Bridg	
i960 RM/RI Specific	4CH		Secondary Arbitration Control		
	50H	PCI Interrupt Routing Control			
	54H	Secondary I/O BASE	Secondary I/O Limit	rved	Rese
	58H	Memory Base	Secondary	emory Limit	Secondary M
	5CH	dary Enable	Secono Decode F	Control	Queue
-		Reserved			

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

13. Section 14.15 in the *i960[®] RM/RN I/O Processor Developer's Manual*

Issue:

A new figure has been added after Figure 14-11, "Extended Bridge Configuration Header Format."

Power Management Capabilities		Next Item Pointer	Capability Identifier	68H
Reserved	PMCSR PCI to PCI Bridge Support	Power Management Control/Status		6CH

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

14. Section 14.15 in the *i960[®] RM/RN I/O Processor Developer's Manual*

Table 14-23 should read: (New registers have been added.)

Issue:

Internal Bus Address	Section, Register Name - Acronym (Page)	
1000H	Section 14.15.1, "Vendor Identification Register - VIDR" on page 14-74	
1002H	Section 14.15.2, "Device ID Register - DIDR" on page 14-75	
1004H	Section 14.15.3, "Primary Command Register - PCR" on page 14-76	
1006H	Section 14.15.4, "Primary Status Register - PSR" on page 14-77	
1008H	Section 14.15.5, "Revision ID Register - RID" on page 14-78	
1009H	Section 14.15.6, "Class Code Register - CCR" on page 14-78	
100CH	Section 14.15.7, "Cacheline Size Register - CLSR" on page 14-79	
100DH	Section 14.15.8, "Primary Latency Timer Register - PLTR" on page 14-80	
100EH	Section 14.15.9, "Header Type Register - HTR" on page 14-81	
1018H	Section 14.15.10, "Primary Bus Number Register - PBNR" on page 14-82	
1019H	Section 14.15.11, "Secondary Bus Number Register - SBNR" on page 14-83	
101AH	Section 14.15.12, "Subordinate Bus Number Register - SubBNR" on page 14-84	
101BH	Section 14.15.13, "Secondary Latency Timer Register - SLTR" on page 14-85	
101CH	Section 14.15.14, "I/O Base Register - IOBR" on page 14-86	
101DH	Section 14.15.15, "I/O Limit Register - IOLR" on page 14-87	
101EH	Section 14.15.16, "Secondary Status Register - SSR" on page 14-88	
1020H	Section 14.15.17, "Memory Base Register - MBR" on page 14-89	
1022H	Section 14.15.18, "Memory Limit Register - MLR" on page 14-90	
1024H	Section 14.15.19, "Prefetchable Memory Base Register - PMBR" on page 14-91	
1026H	Section 14.15.20, "Prefetchable Memory Limit Register - PMLR" on page 14-92	
1034H	Capabilities Register Pointer - Cap_Ptr	
103EH	Section 14.15.23, "Bridge Control Register - BCR" on page 14-94	
1040H	Section 14.15.24, "Extended Bridge Control Register - EBCR" on page 14-97	
1042H	Section 14.15.25, "Secondary IDSEL Select Register - SISR" on page 14-100	
1044H	Section 14.15.26, "Primary Bridge Interrupt Status Register - PBISR" on page 14-102	
1048H	Section 14.15.27, "Secondary Bridge Interrupt Status Register - SBISR" on page 14-104	
104CH	Section 14.15.28, "Secondary Arbitration Control Register - SACR" on page 14-106	
1050H	Section 14.15.29, "PCI Interrupt Routing Select Register - PIRSR" on page 14-106	
1054H	Section 14.15.30, "Secondary I/O Base Register - SIOBR" on page 14-106	
1055H	Section 14.15.31, "Secondary I/O Limit Register - SIOLR" on page 14-107	

Internal Bus Address	Section, Register Name - Acronym (Page)
1058H	Section 14.15.32, "Secondary Memory Base Register - SMBR" on page 14-108
105AH	Section 14.15.33, "Secondary Memory Limit Register - SMLR" on page 14-109
105CH	Section 14.15.34, "Secondary Decode Enable Register - SDER" on page 14-110
105EH	Section 14.15.35, "Queue Control Register - QCR" on page 14-112
1060H	Reserved
1064H	Reserved
1068H	Capability Identifier Register - Cap_ID
1069H	Next Item Pointer Register - Next_Item_Ptr
106AH	Power Management Capabilities Register - PMCR
106CH	Power Management Control/Status Register - PMCSR
106EH	PMCSR PCI to PCI Bridge Support - PMCSR_BSE

15. Section 14.15.4 in the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Figure 14-12 has been changed.

Bit 04 of the PSR is no longer reserved. It is now the "capabilities" bit - when set it this bit indicates the presence of extended capabilities, such as PCI power management. It it off by default for compatibility with legacy designs.

PCI C	configuration Offset 06 - 07H	IOP Attributes 15 12 8 4 0 IOP Attributes rc rc
	ſ	RS = Read/Set NA = Not Accessible
Bit	Default	Description
15	0 ₂	 Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the primary bus even if parity handling is disabled. Set under the following conditions: Write Data Parity Error when the Primary interface of the Bridge is a slave (downstream write). Read Data Parity Error when the Primary interface of the Bridge is a master (upstream read). Any Address Parity Error on the Primary Bus (including one generated by the Primary interface of the Bridge).
14	02	Signaled System Error - This bit is set if P_SERR# is asserted on the primary bus.
13	0 ₂	Master Abort - This bit is set whenever a transaction initiated by the bridge on the primary bus (except Special Cycles) ends in a Master-Abort.
12	02	Target Abort (master) - This bit is set whenever a transaction initiated by the primary interface ends in a Target-Abort
11	02	Target Abort (target) - This bit is set whenever the bridge, acting as a target, terminates the transaction on the primary bus with a Target-Abort.
10:09	012	DEVSEL# Timing - This indicates the primary interface uses Medium Decode timing.
08	02	 Data Parity Error Detected - This bit is set when the bridge: asserted P_PERR# (or saw asserted) on the primary bus and was the master of the transaction when it occurred and the Primary Parity Error Response bit is set in the PCR.
07	1 ₂	Fast Back-to-Back Capable - Indicates that the primary interface capable of accepting Fast Back-to-Back transactions as a target.
06	02	UDF Supported - User Definable Features are not supported
05	02	66 MHz. Capable - 66 MHz. operation is not supported.
04	02	Capabilities - When set, this function implements extended capabilities.
03:00	00002	Reserved

16. Section 14.15.21 in the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: The Bridge Subsystem Vendor ID Register (BSVIR) has been removed in the RM/RN B-0 stepping. This field is optional according to the *PCI Local Bus Specification* Revision 2.2.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

17. Section 14.15.22 in the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: The Bridge Subsystem ID Register (BSIR) has been removed in the RM/RN B-0 stepping. This field is optional according to the *PCI Local Bus Specification* Revision 2.2.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

18. Section 14.15.22 in the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: A new register has been added: Capabilities Pointer Register - Cap_Ptr (Address 1034H).

The Capabilities Pointer Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register provides an offset in this function's PCI Configuration Space for the location of the first item in the Capabilities linked list. In the case of the i960 RM/RN I/O processor, this is the PCI Bus Power Management extended capability as defined by the *PCI Bus Power Management Interface Specification* Revision 1.1.

Capabilities Pointer Register - Cap_Ptr

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

19. Section 14.15.24 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: Table 14-47.

Additional comments for bit 02:

Bit 02 of this register should be cleared for ACPI configuration.

20. Section 14.15.26 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 14-49 has been changed.

Bit 06 of this register is no longer reserved: it is now the "Power State Transition" bit.

	Attributes 71 Attributes 72 Attributes 72 Attributes 72 72 72 72 72 72 72 72 72 72 72 72 72 7	28 24 20 16 12 8 4 0 rv rv r			
PCI Configuration Offset 80960 Core Local Bus Address Attribute Legend: RW = Read/Write 44 - 47H 0000 1044H RV = Reserved RC = Read Clear PR = Preserved RO = Read Only RS = Read/Set NA = Not Accessible					
Bit	Default	Description			
31:07	000000H	Reserved			
06	0 ₂	Power State Transition - When the Power State Field of the Power Management Control/Status Register is written to transition the Bridge function Power State from either D3 to D0 or D0 to D3 and the Power State Transition Interrupt mask is cleared, this bit is set.			
05	0 ₂	 Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the primary bus even if parity handling is disabled. Set under the following conditions: Write Data Parity Error when the Primary interface of the Bridge is a slave (downstream write). Read Data Parity Error when the Primary interface of the Bridge is a master (upstream read). Any Address Parity Error on the Primary Bus (including one generated by the Primary interface of the Bridge) 			
04	02	P_SERR# Asserted - This bit is set if P_SERR# is asserted on the primary PCI bus.			
03	02	PCI Master Abort - This bit is set whenever a transaction initiated by the primary master interface ends in a Master-Abort.			
02	02	PCI Target Abort (Master) - This bit is set whenever a transaction initiated by the primary master interface ends in a Target-Abort.			
01	0 ₂	PCI Target Abort (Target) - This bit is set whenever the primary interface, acting as a target, terminates the transaction on the PCI bus with a Target-Abort.			
00	02	 PCI Master Parity Error - The primary interface sets this bit when three conditions are met: 1) the bus agent asserted P_PERR# itself or observed P_PERR# asserted 2) the agent setting the bit acted as the bus master for the operation in which the error occurred 3) the Parity Checking Enable bit (PCR Register) is set 			

21. Section 14.15.34 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: Table 14-55 has been changed.

Bit 01 of this register is no longer reserved. It is now the "Power State Transition Interrupt Mask" bit.

		IOP 15 12 8 Attributes rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/r	
PCI C	Configuration Offset 5C - 5DH	80960 Core Local Bus Address 0000 105CH	Attribute Legend:RW = Read/WriteRV = ReservedRC = Read ClearPR = PreservedRO = Read OnlyRS = Read/SetNA = Not Accessible
Bit	Default	Desc	ription
15	12	S_SERR# Detected Interrupt Mask - When interface resulting in bit 14 of the SSR being set. When clear, an error that sets bit 14 of set	set, detecting S_SERR# on the secondary g set will <i>not</i> result in bit 4 of the SBISR being the SSR will cause bit 4 of the SBISR to be
14	1 ₂	Secondary PCI Master Abort Interrupt Mast bit 13 of the SSR being set will <i>not</i> result in error that sets bit 13 of the SSR will cause	k - When set, a master abort error resulting in bit 3 of the SBISR being set. When clear, an bit 3 of the SBISR to be set.
13	1 ₂	Secondary PCI Target Abort (Master) Intern resulting in bit 12 of the SSR being set will When clear, an error that sets bit 12 of the	rupt Mask- When set, a target abort error <i>not</i> result in bit 2 of the SBISR being set. SSR will cause bit 2 of the SBISR to be set.
12	12	Secondary PCI Target Abort (Target) Interror resulting in bit 11 of the SSR being set will When clear, an error that sets bit 11 of the s	upt Mask - When set, a target abort error <i>not</i> result in bit 1 of the SBISR being set. SSR will cause bit 1 of the SBISR to be set.
11	1 ₂	Secondary PCI Master Parity Error Interrup bit 8 of the SSR being set will <i>not</i> result in t error that sets bit 8 of the SSR will cause b	ot Mask - When set a parity error resulting in bit 0 of the SBISR being set. When clear, an it 0 of the SBISR to be set.
10	12	P_SERR# Asserted Interrupt Mask - When primary interface resulting in bit 14 of the P PBISR being set. When clear, an error that PBISR to be set	set, detecting or asserting P_SERR# on the SR being set will <i>not</i> result in bit 4 of the sets bit 14 of the PSR will cause bit 4 of the
09	1 ₂	Primary PCI Master Abort Interrupt Mask - 13 of the PSR being set will <i>not</i> result in bit error that sets bit 13 of the PSR will cause	When set, a master abort error resulting in bit t 3 of the PBISR being set. When clear, an bit 3 of the PBISR to be set.
08	1 ₂	Primary PCI Target Abort (Master) Interrupt resulting in bit 12 of the PSR being set will When clear, an error that sets bit 12 of the	t Mask- When set, a target abort error <i>not</i> result in bit 2 of the PBISR being set. PSR will cause bit 2 of the PBISR to be set.
07	12	Primary PCI Target Abort (Target) Interrupt resulting in bit 11 of the PSR being set will When clear, an error that sets bit 11 of the	Mask - When set, a target abort error <i>not</i> result in bit 1 of the PBISR being set. PSR will cause bit 1 of the PBISR to be set.

		IOP 15 12 8 IOP rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/rw/r		
PCI C	onfiguration Offset 5C - 5DH	80960 Core Local Bus Address 0000 105CH	Attribute Legend:RW = Read/WriteRV = ReservedRC = Read ClearPR = PreservedRO = Read OnlyRS = Read/SetNA = Not Accessible	
Bit	Default	De	escription	
06	1 ₂	Primary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in bit 8 of the PSR being set will <i>not</i> result in bit 0 of the PBISR being set. When clear, an error that sets bit 8 of the PSR will cause bit 0 of the PBISR to be set.		
05	1 ₂	Secondary Detected Parity Error Bit Inte bit 15 of the SSR being set will not result	rrupt Mask - When set a parity error resulting in t bit 5 of the SBISR being set.	
04	12	Primary Detected Parity Error Bit Interrup 15 of the PSR being set will not result in	ot Mask - When set a parity error resulting in bit bit 5 of the PBISR being set.	
03	12	Secondary Bus Reset Occurred Interrup senses the deassertion (by software only 6 of the SBISR will not be set.	t Mask - When this bit is set, and the bridge) of bit 6, Secondary Bus Reset, in the BCR, bit	
02	02	Private Memory Space Enable - when se addresses in the SMBR/SMLR and SIOE private memory space on the secondary	et, this bit disables Bridge forwarding of BR/SIOLR address ranges. This creates a PCI bus that allows peer to peer transactions.	
01	1 ₂	Power State Transition Interrupt Mask - V Control/Status Register is written to trans either D0 to D3 or D3 to D0, bit 6 of the R	When this bit is set and the Power Management sition the Bridge Function Power State from PBISR is not set.	
00	02	Reserved		

inta

22. Section 14.15.34 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: A new register has been added: Capability Pointer Register-Cap_ID (Address 1068H).

The Capability Identifier Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register in the PCI Extended Capability header identifies the type of Extended Capability contained in that header. In the case of the i960 RM/RN I/O processor, this is the PCI Bus Power Management extended capability with an ID of 01H as defined by the *PCI Bus Power Management Interface Specification* Revision 1.1.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

23. Section 14.15.34 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: Next Item Pointer Register-Next_Item_Ptr (Address 1069H).

The Next Item Pointer Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register describes the location of the next item in the function's capability list. For the i960 RM/RN I/O processor, the Power Management Registers are the only Extended Capability Supported, thus the Next_Item_Ptr is set to 00H, indicating the end of the Capabilities List.

IOP 7 4 0 Attributes ro ro ro ro ro ro ro ro ro ro PCI ro ro ro ro ro ro ro ro ro					
PCI C	onfiguration Offset 69H	80960 Core Local Bus Address 0000 1069H	Attribute Legend: RV = Reserved PR = Preserved RS = Read/Set	RW = Read/Write RC = Read Clear RO = Read Only NA = Not Accessible	
Bit	Default	D	escription		
07:00	00H	Next_Item_Pointer - This field provides pointing to the next item in the function's Capabilities besides PCI Power Manage register is set to 00H.	an offset into the function capability list. Since there ment in the i960 RM/RN	n's configuration space are no other Extended /O processor, the	

intel

24. Section 14.15.34 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: Power Management Capabilities Register-PMCR (Address 106AH).

Power Management Capabilities bits adhere to the definitions in the *PCI Bus Power Management Interface Specification* Revision 1.1. This register is a 16-bit read-only register which provides information on the capabilities of the bridge function related to power management

PCI C	configuration Offset 6A- 6BH	IOP 15 12 8 Attributes ro ro ro ro ro ro ro ro ro ro ro ro ro PCI ro ro ro ro ro ro ro ro ro ro 80960 Core Local Bus Address 0000 106AH	4 0 ro ro rv ro ro ro ro ro ro rv ro ro ro Attribute Legend: RV = Reserved PR = Preserved RS = Read/Set	RW = Read/Write RC = Read Clear RO = Read Only NA = Not Accessible
Bit	Default	De	scription	
15:11	00000 ₂	PME_Support - This function is not capable of asserting the PME# signal in any state, since PME# is not supported by the i960 RM/RN I/O processor, thus the value of PME_Support is set to 00000B.		
10	02	D2_Support - This bit is set to 0 ₂ indicatin support the D2 Power Management State	g that the i960 RM/RN I/	O processor does not
9	02	D1_Support - This bit is set to 0 ₂ indicatin support the D1 Power Management State	g that the i960 RM/RN I/	O processor does not
8:6	000 ₂	Aux_Current - This field is set to 000 ₂ ind no current requirements for the 3.3Vaux s <i>Management Interface Specification</i> Revi	icating that the i960 RM/ ignal as defined in the <i>P</i> sion 1.1	RN I/O processor has CI Bus Power
5	02	DSI - This field is set to 0_2 meaning that t initialization sequence following the transi	his function will not requi tion to the D0 uninitialize	re a device specific ed state.
4	02	Reserved.		
3	02	PME Clock - Since the i960 RM/RN I/O p generation, this value is set to $\rm 0_2$	rocessor does not suppo	rt PME# signal
2:0	010 ₂	Version - Setting these bits to 010 ₂ means Management Interface Specification Revi	that this function compli sion 1.1	es with PCI Bus Power

25. Section 15.7 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Figure 15-11 has been changed. It now reflects the following:

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

26. Section 15.7 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new figure has been added: ATU Interface Extended Configuration Header.

Power Management Capabilities	Next Item Pointer	Capability Identifier	80H
Reserved	Power Manageme	nt Control/Status	84H

27. Section 15.7 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 15-26 has been changed to read:

Register Name	Register Size in Bits	PCI Configuration Cycle Register Number	Internal Bus Address
ATU Vendor ID Register - ATUVID	16	0	0000.1200H
Device ID Register - DID (80960RN) Device ID Register - DID (80960RM)	16	0	0000.1202H
Primary ATU Command Register - PATUCMD	16	1	0000.1204H
Primary ATU Status Register - PATUSR	16	1	0000.1206H
ATU Revision ID Register - ATURID	8	2	0000.1208H
ATU Class Code Register - ATUCCR	24	2	0000.1209H
ATU Cacheline Size Register - ATUCLSR	8	3	0000.120CH
ATU Latency Timer Register - ATULT	8	3	0000.120DH
ATU Header Type Register - ATUHTR	8	3	0000.120EH
ATU BIST Register - ATUBISTR	8	3	0000.120FH
Primary Inbound ATU Base Address - PIABAR	32	4	0000.1210H
Reserved	32	5	0000.1214H
Reserved	32	6	0000.1218H
Reserved	32	7	0000.121CH
Reserved	32	8	0000.1220H
Reserved	32	9	0000.1224H
Reserved	32	10	0000.1228H
ATU Subsystem Vendor ID Register - ASVIR	16	11	0000.122CH
ATU Subsystem ID Register - ASIR	16	11	0000.122EH
Expansion ROM Base Address Register -ERBAR	32	12	0000.1230H
ATU Capabilities Pointer Register	8	13	0000.1234H
Reserved	8	13	0000.1235H
Reserved	16	13	0000.1236H
Reserved	32	14	0000.1238H
ATU Interrupt Line Register - ATUILR	8	15	0000.123CH
ATU Interrupt Pin Register - ATUIPR	8	15	0000.123DH
ATU Minimum Grant Register - ATUMGNT	8	15	0000.123EH
ATU Maximum Latency Register - ATUMLAT	8	15	0000.123FH
Primary Inbound ATU Limit Register - PIALR	32	16	0000.1240H
Primary Inbound ATU Translate Value Register - PIATVR	32	17	0000.1244H
Secondary Inbound ATU Base Address Register - SIABAR	32	18	0000.1248H
Secondary Inbound ATU Limit Register - SIALR	32	19	0000.124CH
Secondary Inbound Translate ATU Value Register - SIATVR	32	20	0000.1250H
Primary Outbound Memory Window Value Register -POMWVR	32	21	0000.1254H
Reserved	32	22	0000.1258H
Primary Outbound I/O Window Value Register - POIOWVR	32	23	0000.125CH
Primary Outbound DAC Window Value Register - PODWVR	32	24	0000.1260H

Register Name	Register Size in Bits	PCIConfiguration Cycle Register Number	Internal Bus Address
Primary Outbound Upper 64-bit DAC Register - POUDR	32	25	0000.1264H
Secondary Outbound Memory Window Value Register - SOMWVR	32	26	0000.1268H
Secondary Outbound I/O Window Value Register - SOIOWVR	32	27	0000.126CH
Reserved	32	28	0000.1270H
Expansion ROM Limit Register - ERLR	32	29	0000.1274H
Expansion ROM Translate Value Register - ERTVR	32	30	0000.1278H
Reserved	32	31	0000.127CH
ATU Capability Identifier Register	8	32	0000.1280H
ATU Next Item Pointer Register	8	32	0000.1281H
ATU Power Management Capabilities Register	16	32	0000.1282H
ATU Power Management Control/StatusRegister	16	32	0000.1284H
Reserved	16	33	0000.1286H
ATU Configuration Register - ATUCR	32	34	0000.1288H
Reserved	32	35	0000.128CH
Primary ATU Interrupt Status Register - PATUISR	32	36	0000.1290H
Secondary ATU Interrupt Status Register - SATUISR	32	37	0000.1294H
Secondary ATU Command Register - SATUCMD	16	38	0000.1298H
Secondary ATU Status Register - SATUSR	16	38	0000.129AH
Secondary Outbound DAC Window Value Register - SODWVR	32	39	0000.129CH
Secondary Outbound Upper 64-bit DAC Register - SOUDR	32	40	0000.12A0H
Primary Outbound Configuration Cycle Address Register - POCCAR	32	41	0000.12A4H
Secondary Outbound Configuration Cycle Address Register - SOCCAR	32	42	0000.12A8H
Secondary Outbound Configuration Cycle Data Register - SOCCDR	32	Not Available in PCI Configuration Space	0000.12ACH
Primary Outbound Configuration Cycle Data Register - POCCDR	32	Not Available in PCI Configuration Space	0000.12B0H
Primary ATU Interrupt Mask Register - PATUIMR	32	47	0000.12BCH
Secondary ATU Interrupt Mask Register - SATUIMR	32	48	0000.12C0H

28. Section 15.7 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 15-27 has been changed to read:

Internal				
Bus	ATU PCI Configuration Register Section, Name, Page			
Offset				
00	Section 15 7.1 "ATLLVander ID Register ATLIVID" on page 15 51			
0011	Section 15.7.1, ATU Vendor ID Register - ATUDID" on page 15-51			
0211	Section 15.7.2, ATO Device ID Register - ATODID on page 15-52			
06H	Section 15.7.3, Thinary ATU Status Register - ATUSP" on page 15-54			
	Section 15.7.5, "ATLL Povision ID Pogister - ATLIPID" on page 15.56			
0011	Section 15.7.6, ATU Class Code Register - ATUCCP" on page 15-56			
0011	Section 15.7.0, ATU Cacheline Size Register - ATUCI SR" on page 15-57			
	Section 15.7.8, ATO Oddheline Olze Register - ATOULOR on page 15.57			
0EH	Section 15.7.9, "ATU Header Type Register - ATUHTR" on page 15-58			
0EH	Section 15.7.10, "ATU BIST Register - ATUBISTR" on page 15-59			
10H	Section 15.7.11, "Primary Inbound ATH Base Address Register - PIABAR" on page 15-60			
2CH	Section 15.7.12, "ATU Subsystem Vendor ID Register - ASVIR" on page 15-61			
2611 2EH	Section 15.7.13, "ATU Subsystem ID Register - ASIR" on page 15-61			
30H	Section 15.7.14 "Expansion ROM Base Address Register - ERBAR" on page 15-62			
34H	"ATU Canabilities Pointer Register - ATU Can. Ptr"			
3CH	Section 15.7.15 "Determining Block Sizes for Base Address Registers" on page 15-63			
3DH	Section 15.7.16. "ATU Interrupt Line Register - ATUIL R" on page 15-64			
3EH	Section 15.7.18, "ATU Minimum Grant Register - ATUMGNT" on page 15-66			
3FH	Section 15.7.19, "ATU Maximum Latency Register - ATUMLAT" on page 15-67			
40H	Section 15.7.20, "Primary Inbound ATU Limit Register - PIALR" on page 15-68			
44H	Section 15.7.21, "Primary Inbound ATU Translate Value Register - PIATVR" on page 15-69			
48H	Section 15.7.22. "Secondary Inbound ATU Base Address Register - SIABAR" on page 15-70			
4CH	Section 15.7.23, "Secondary Inbound ATU Limit Register - SIALR" on page 15-71			
50H	Section 15.7.24, "Secondary Inbound ATU Translate Value Register - SIATVR" on page 15-72			
54H	Section 15.7.25, "Primary Outbound Memory Window Value Register - POMWVR" on page 15-73			
5CH	Section 15.7.26, "Primary Outbound I/O Window Value Register - POIOWVR" on page 15-74			
60H	Section 15.7.27, "Primary Outbound DAC Window Value Register - PODWVR" on page 15-75			
64H	Section 15.7.28, "Primary Outbound Upper 64-bit DAC Register - POUDR" on page 15-76			
68H	Section 15.7.29, "Secondary Outbound Memory Window Value Register - SOMWVR" on page 15-77			
6CH	Section 15.7.30, "Secondary Outbound I/O Window Value Register - SOIOWVR" on page 15-78			
74H	Section 15.7.31, "Expansion ROM Limit Register - ERLR" on page 15-79			
78H	Section 15.7.32, "Expansion ROM Translate Value Register - ERTVR" on page 15-80			
80H	"ATU Capability Identifier Register - ATU_Cap_ID"			
81H	"ATU Next Item Pointer Register - ATU_Next_Item_Ptr"			
82H	"ATU Power Management Capabilities Register - APMCR"			
84H	"ATU Power Management Control/Status Register - APMCSR"			
88H	Section 15.7.33, "ATU Configuration Register - ATUCR" on page 15-81			
90H	Section 15.7.34, "Primary ATU Interrupt Status Register - PATUISR" on page 15-83			
94H	Section 15.7.35, "Secondary ATU Interrupt Status Register - SATUISR" on page 15-85			
98H	Section 15.7.36, "Secondary ATU Command Register - SATUCMD" on page 15-87			
9AH	Section 15.7.37, "Secondary ATU Status Register - SATUSR" on page 15-88			
9CH	Section 15.7.38, "Secondary Outbound DAC Window Value Register - SODWVR" on page 15-89			
A0H	Section 15.7.39, "Secondary Outbound Upper 64-bit DAC Register - SOUDR" on page 15-90			
A4H	Section 15.7.40, "Primary Outbound Configuration Cycle Address Register - POCCAR" on page 15-91			
A8H	Section 15.7.41, "Secondary Outbound Configuration Cycle Address Register - SOCCAR" on page 15-92			
ACH	Section 15.7.42, "Primary Outbound Configuration Cycle Data Register - POCCDR" on page 15-93			
B0H	Section 15.7.43, "Secondary Outbound Configuration Cycle Data Register - SOCCDR" on page 15-94			
BCH	Section 15.7.44, "Primary ATU Interrupt Mask Register - PATUIMR" on page 15-95			
C0H	Section 15.7.45, "Secondary ATU Interrupt Mask Register - SATUIMR" on page 15-96			

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

29. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 15-32 has been changed. The change is that Bit 04 is no longer a reserved bit. It is now the "Capabilities" bit.

80960	0 Core Local E 1206H	IOP 15 12 8 4 0 Attributes rc rc			
Bit	Default	Description			
15	02	 Detected Parity Error - set when a parity error is detected on the primary PCI bus even when the PATUCMD register's Parity Error Response bit is cleared. Set under the following conditions: Write Data Parity Error when the PATU is a slave (inbound write). Read Data Parity Error when the PATU, DMA Channel 0, or DMA Channel1 is a master (outbound read). Any Address Parity Error on the Primary Bus (including one generated by the PATU or DMA Channels 0.81) 			
14	02	P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus by the primary ATU.			
13	02	Master Abort - set when a transaction initiated by the primary ATU PCI master interface, DMA Channel 0, or DMA Channel 1 ends in a Master-Abort. Setting of this bit due to an error condition from either DMA Channel will not cause an ATU interrupt to the core.			
12	12 0 ₂ Target Abort (master) - set when a transaction initiated by the primary ATU PCI master interface, DMA Channel 0 master interface or DMA Channel 1 master interface ends in a target abort. Setting of this bit due to an error condition from either DMA Channel will not cause an ATU interrupt to the core.				
11	02	Target Abort (target) - set when the primary ATU interface, acting as a target, terminates the transaction on the primary PCI bus with a target abort.			
10:09	01 ₂	DEVSEL# Timing - These bits are read-only and define the slowest DEVSEL# timing for a target device (except configuration accesses). 00 ₂ = Fast 01 ₂ = Medium 10 ₂ = Slow 11 ₂ = Reserved This primary and secondary ATU interfaces uses Medium timing (01 ₂)			
08	0 ₂	 Master Parity Error - The primary ATU interface sets this bit under the following conditions: The PATU, DMA Channel 0, or DMA Channel 1 asserted S_PERR# itself or the PATU observed S_PERR# asserted. And the PATU, DMA Channel 0, or DMA Channel 1 acted as the bus master for the operation in which the error occurred. And the PATUCMD register's Parity Error Response bit is set Setting of this bit due to an error condition from either DMA Channel will not cause an ATU interrupt to the core. 			

30. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: ATU Capabilities Pointer Register-ATU_Cap_Ptr (Address 1234H).

The Capabilities Pointer Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register provides an offset in this function's PCI Configuration Space for the location of the first item in the Capabilities linked list. In the case of the i960 RM/RN I/O processor, this is the PCI Bus Power Management extended capability as defined by the *PCI Bus Power Management Interface Specification* Revision 1.1.

Capabilities Pointer Register - ATU_Cap_Ptr

n

31. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: ATU Capability Identifier Register - ATU_Cap_ID (Address 1280H).

The Capability Identifier Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register in the PCI Extended Capability header identifies the type of Extended Capability contained in that header. In the case of the i960 RM/RN I/O processor, this is the PCI Bus Power Management extended capability with an ID of 01H as defined by the *PCI Bus Power Management Interface Specification* Revision 1.1.

ATU Capability Identifier Register - ATU_Cap_ID

32. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: ATU Next Item Pointer Register-ATU_Next_Item_Ptr (Address 1281H).

The Next Item Pointer Register bits adhere to the definitions in the *PCI Local Bus Specification* Revision 2.2. This register describes the location of the next item in the function's capability list. For the i960 RM/RN I/O processor, the Power Management Registers are the only Extended Capability Supported, thus the Next_Item_Ptr is set to 00H, indicating the end of the Capabilities List.

ATU Next Item Pointer Register - ATU_Next_Item_Ptr

intجا

33. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: New register added: ATU Power Management Capabilities Register-APMCR (Address 1282).

Power Management Capabilities bits adhere to the definitions in the *PCI Bus Power Management Interface Specification* Revision 1.1. This register is a 16-bit read-only register which provides information on the capabilities of the ATU function related to power management.

ATU Power Management Capabilities Register - APMCR

PCI C	onfiguration Offset 82- 83H	IOP Attributes 15 12 8 PCI Attributes ro ro ro ro ro ro ro 80960 Core Local Bus Address 0000 1282H 12 8 8	4 0 o ro ro ro ro ro ro ro ro o ro ro ro ro ro ro ro Attribute Legend: RW = Read/Write RV = Reserved PR = Preserved RC = Read Clear PR = Preserved RS = Read/Set NA = Not Accessible		
Bit	Default	D	escription		
15:11	00000 ₂	PME_Support - This function is not capable of asserting the PME# signal in any state, since PME# is not supported by the i960 RM/RN I/O processor, thus the value of PME_Support is set to 00000B.			
10	02	D2_Support - This bit is set to 0_2 indicating that the i960 RM/RN I/O processor does not support the D2 Power Management State			
9	02	D1_Support - This bit is set to 0_2 indicating that the i960 RM/RN I/O processor does not support the D1 Power Management State			
8:6	000 ₂	Aux_Current - This field is set to 000 ₂ indicating that the i960 RM/RN I/O processor has no current requirements for the 3.3Vaux signal as defined in the <i>PCI Bus Power Management Interface Specification</i> Revision 1.1			
5	02	DSI - This field is set to 0_2 meaning that this function will require a device specific initial- ization sequence following the transition to the D0 uninitialized state.			
4	02	Reserved.			
3	02	PME Clock - Since the i960 RM/RN I/O processor does not support PME# signal generation, this value is set to 0_2			
2:0	010 ₂	Version - Setting these bits to 010 ₂ means that this function complies with <i>PCI Bus Power</i> Management Interface Specification Revision 1.1			

34. Section 15.7.4 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

A new register has been added: ATU Power Management Control/Status Register-APMCSR (Address 1284).

Power Management Control/Status bits adhere to the definitions in the *PCI Bus Power Management Interface Specification* Revision 1.1. This 16-bit register is the primary control and status interface for the power management extended capability.

		IOP 15 12 8 Attributes ro rv rv rv rv rv PCI ro rv rv rv rv rv rv rv	4 0			
PCI C	onfiguration Offset	80960 Core Local Bus Address	Attribute Legend:	RW = Read/Write		
	84- 85H	0000 1284H	RV = Reserved	RC = Read Clear		
			RS = Read/Set	NA = Not Accessible		
Dir	Defeat	D				
Βιτ	Detault	De	scription			
15	 PME_Status - This function is not capable of asserting the PME# signal in any state, since PME# is not supported by the i960 RM/RN I/O processor, thus the value of PME_Status is set to 0₂ and is read-only. 					
14:9	00H	Reserved				
8	8 0 ₂ PME_En - This bit is hardwired to read-only 0 ₂ since this function does not support PME# generation from any power state.					
7:2	0000002	Reserved				
1:0	00 ₂	Power State - This 2-bit field is used both to determine the current power state of a function and to set the function into a new power state. The definition of the values is: $00_2 - D0$ $01_2 - D1$ (Unsupported) $10_2 - D2$ (Unsupported) $11_2 - D3_{hot}$ The i960 RM/RN I/O processor supports only the D0 and D3 _{hot} states. According to the specification, the register will need to be designed to discard writes of 01B or 10B, though the write operation should complete on the bus normally. In other words, no state change should occur! A change of state from D0 -> D3 or D3 -> D0 will				

ATU Power Management Control/Status Register - APMCSR

35. Section 15.7.34 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 15-63 needs to be changed.

Bit 11 of the Primary ATU Interrupt Status Register is no longer a reserved bit. It is now the "Power State Transition" bit.

A A 80960 C	IOP ttributes	1 28 24 20 16 12 8 4 0 rv rv				
Bit	Default	Description				
31:12	00000H	Reserved				
11	02	Power State Transition - When the Power State Field of the ATU Power Management Control/Status Register is written to transition the ATU function Power State from either D3 to D0 or D0 to D3 and the ATU Power State Transition Interrupt mask bit is cleared, this bit is set.				
10	02	P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus by the primary ATU.				
09	 09 02 02 02 03 04 04 05 05 05 06 06 07 08 09 09 09 00 0					
08	08 02 ATU BIST Interrupt - When set, the host processor has set the start BIST, ATUBISTR register bit 6, and the ATU BIST interrupt enable (ATUCR register bit 12) is enabled. The i960 core processor can initiate the software BIST and store the result in ATUBISTR register bits 3:0.					
07	07 0 ₂ Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus master interface ends in a Master-abort.					
06:05	002	Reserved.				

36. Section 15.7.44 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue:

Table 15-73 has been changed.

Bit 08 of the PATUIMR is no longer reserved: it is now the "Power State Transition Interrupt Mask" bit.

A A 80960 C	IOP ttributes rv PCI vv ttributes vv Core Local Bus 12BCH	1 28 24 20 16 12 8 4 0 rv rv			
Bit	Default	Description			
04	0 ₂	PATU PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting in bit 12 of the PATUSR being set will <i>not</i> result in bit 2 of the PATUISR being set. When clear, an error that sets bit 12 of the PATUSR will cause bit 2 of the PATUISR to be set.			
03	PATU PCI Target Abort (Target) Interrupt Mask- When set, a target abort error resulting in bit 11 of the PATUSR being set will <i>not</i> result in bit 1 of the PATUISR being set. When clear, an error that sets bit 11 of the PATUSR will cause bit 1 of the PATUISR to be set.				
02	02 0 ₂ PATU PCI Master Parity Error Interrupt Mask - When set, a parity error resulting in bit 8 of the PATUSR being set will <i>not</i> result in bit 0 of the PATUISR being set. When clear, an error that sets bit 8 of the PATUSR will cause bit 0 of the PATUISR to be set.				
01	01 02 Primary ATU Inbound Error P_SERR# Enable - When set, the PATU will assert (if enabled through the PATUCMD) P_SERR# on the primary interface in response to a master abort on the internal bus during an inbound write transaction or a target abort from the memory controller (ECC Error) during an inbound write transaction. When clear, P_SERR# will not be asserted under the previous conditions.				
00	0 ₂	Primary ATU ECC Target Abort Enable - When set, the PATU will perform a target abort on the primary PCI interface in response to a target abort (ECC error) from the memory controller on the internal bus. This action only occurs when during an inbound read transaction where the data phase that was target aborted on the internal bus is actually requested from the inbound read queue. When clear, the response under the same conditions is a disconnect with data (the data being up to 64 bits of 1's) on the PCI bus instead of a target abort.			

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

37. Section 15.7.20, Table 15-49

Issue: Table 15-49 has been changed.

The default value of bits 31:12 in the Primary Inbound ATU Limit Register (PIALR) has changed on the B-0 stepping from FFFFEH to FF000H, which corresponds to an inbound window of 16MB.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

38. Section 15.7 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: On page 15-49, register 12ACh should be POCCDR and register 12B0h should be SOCCDR. Table 15-26 has been changed.

nt

39. Section 3.5.1, page 3-11

Issue: In the paragraph headed by the words "atomic access", remove the last two sentences that state: "An atomic memory system can be implemented by using the LOCK# signal to qualify hold requests from external bus agents. The processor asserts LOCK# for the duration of an atomic memory operation." There is no LOCK# signal on the 80960RM/RN.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

40. Section 13.2.3, page 13-8

Issue: The statement in the 4th paragraph, that reads "The core is the only device permitted to write to the Flash device..." should read "Software must ensure that only a single byte is written".

The Flash device can be programmed via PCI commands through the ATU. In fact Intel's FlashI/O utility (which is part of our ProI/O Utilities) programs the Flash using the ATU.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

41. Section 12.3.1, page 12-4

Issue: The sentence on page 12-4, 'The LMCON registers and their programming are described in Section 12.3, "Programming the Logical Memory Attributes" on page 12-4.' has been removed.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

42. Section 11.2.8, page 11-5

Issue:The sentence on page 11-5, "Specifications for cold and warm reset can be found in the 80960RMI/O Processor Data Sheet and the 80960RN I/O Processor Data Sheet." has been removed.

Unlike the i960RP/RD I/O processor, the i960RM/RN I/O processor has no external local bus. The cold and warm reset signals referenced in the i960RP/RD I/O processor data sheet are not accessible on the i960RM/RN I/O processor. The i960RM/RN I/O processor complies with the PCI local bus spec v2.2. Reset parameters are defined in this spec.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

43. Section 14.15 Bridge Configuration Header Bottom Address Offset 60H

Issue: The bottom - address offset 60H in Figure 14-11 is Reserved. See Documentation Change 12 in this spec update.

44. Power Management Control/Status Register - PMCSR (address 106C)

Issue: This new register has been added. Power Management Control/Status bits adhere to the definitions in the *PCI Bus Power Management Interface Specification* Revision 1.1. This 16-bit register is the primary control and status interface for the power management extended capability.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

Power Management Control/Status Register - PMCSR

PCI C	Configuration Offset 6C- 6DH	IOP 15 12 8 4 0 IOP 10 10 10 10 10 10 PCI 10 10 10 10 10 10 10 Attributes 10			
Bit	Default	Description			
15	15 0_2 PME_Status - This function is not capable of asserting the PME# signal in any state, since PME# is not supported by the i960 [®] RM/RN I/O processor, thus the value of PME_Status is set to 0_2 and is read-only.				
14:9	00H	Reserved			
8	02	PME_En - This bit is hardwired to read-only 0 ₂ since this function does not support PME# generation from any power state.			
7:2	0000002	Reserved.			
1:0	00 ₂	Power State - This 2-bit field is used both to determine the current power state of a function and to set the function into a new power state. The definition of the values is: $00_2 - D0$ $01_2 - D1$ (Unsupported) $10_2 - D2$ (Unsupported) $11_2 - D3_{hot}$ The i960 [®] RM/RN I/O processor supports only the D0 and D3 _{hot} states. According to the specification, the register will need to be designed to discard writes of 01B or 10B. Although such write operations should complete on the bus normally, no state changes should occur. A change of state from D0 -> D3 or D3 -> D0 will result in an NMI interrupt of the i960 JT processor.			

nta

45. PMCSR PCI to PCI Bridge Support - PMCSR_BSE

Issue: This new register has been added (as part of ACPI). This register supports Bridge specific Power Management Control/Status functionality and is required for all PCI-to-PCI bridges.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

PMCSR PCI to PCI Bridge Support - PMCSR_BSE

46. 128Mbit SDRAM Technology

Issue: Table 13-6 of the *i960[®] RM/RN I/O Processor Developer's Manual*, lists the supported SDRAM configurations. The table only lists 16Mbit and 64Mbit SDRAM technology.

Status: 128Mbit SDRAM devices configured as 8Mx16 can also be used with the 80960 RM/RN. These devices multiplex 12 rows and 9 columns on the address bus, which is the same as the 64Mbit, 8Mx8 SDRAM devices. Therefore, all the 128Mbit memory will be addressable when the SDRAM boundary register bit 31 is set to indicate 64Mbit.

There is one limitation to using this configuration. Using x16 SDRAM with ECC-on, means half of one of the ECC SDRAM modules will not be used. The developer's manual states on page 13-11, 'Since an ECC-supported system needs to be 72 bits wide, x16 devices are not optimal.'

Using three 128Mb 8Mx16 devices, a 32-bit configuration with ECC-on in a single 40-bit bank (40 of 48-bits usable) would yield 32Mbytes of usable ECC memory.

Using five 128Mb 8Mx16 devices, a 64-bit configuration with ECC-on in a single 72-bit bank (72 of 80-bits usable) would yield 64Mbytes of usable ECC memory.

Table 13-6 on page 13-11 has changed.

Table 13-6. Supported SDRAM Configurations

SDRAM	SDRAM Arrangement	#	Address Size		Leaf Select		Total Memory
Technology		Arrangement	Banks	Row	Column	SBA[1]	SBA[0]
	014 - 0	1	44	0	-	I_AD[23]	16M
16 Mhit		2	11	9			32M
	1M x 16	1	11	8	-	I_AD[22]	8M
		2					16M
64 Mbit	8M x 8	1	- 12 9	0			64M
		2			I_AD[24]	128M	
	4M x 16	1	10	8	I_AD[24]	I_AD[23]	32M
		2	12				64M
100 Mbit	8M x 16	1	10	9	I_AD[25]	I_AD[24]	64M
		2	12				128M

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

47. 64 Bit Operation

Issue:

e: Section 14.6.3 of the *i960[®] RM/RN I/O Processor Developer's Manual*, titled "64-Bit Operation," incorrectly states that the *i960[®] RM I/O* processor is a 64 bit PCI device. This is a typographical error. The *i960 RM I/O* processor is a 32 bit/33MHz PCI device. Any reference to the *i960[®] RM I/O* processor in section 14.6.3 on pages 14-26—14-31 should be ignored.

48. Scrubbing

Section 13.3.7.4 of the Developer's Manual mentions using the i960 JT I/O processor **atmod** instruction as well as **ldl/stl** and **ld/st** instructions in a scrubbing routine. The entire section should be changed to read as follows:

Fixing the data error in memory is called scrubbing. The i960 RM/RN I/O processor relies on software scrubbing. Once the MCU detects an error during a read, the MCU writes the address where the error occurred in the ECARx register, updates the ELOGx register with information regarding the error and interrupts the core with an NMI. The core decides how to fix the error through an interrupt handler. Software could decide to perform the scrubbing on:

- the data location that failed
- the entire row of the data that failed
- the entire memory

The interrupt handler should perform the following actions.

- 1. Turn off ECC error reporting.
- *Note:* Since the scrubbing routine reads the failed location in order to fix the single-bit error, a second error is reported. Therefore, software should disable single-bit ECC reporting (ECCR[0]) during the scrubbing routine.
 - 2. Read the MCISR register and store the results. Determine which ECAR/ELOG register the MCU used to record the ECC error. Note: This is a read clear register.
 - 3. Check the ELOGx register for information about the ECC error. Determine if the error is a single bit or multi-bit error. Double-bit or nibble errors cannot be fixed. If it's a single-bit error, continue.
 - 4. Do an **atmod** (read, modify, write) to the address specified in the ECARx register. Even though an atmod instruction is only a 32 bit instruction, this will work for either 32 bit memory mode or 64 bit memory mode. The error is fixed by the MCU when it reads the memory location and stores the value in the register, then the corrected data is written back to the memory location.
 - 5. Turn on ECC error reporting.
 - 6. Exit from ISR.
 - 7. Read from the address specified in the ECARx register again.
 - 8. If no errors are reported (through NMI interrupt), the scrubbing procedure worked.
 - 9. If another error is generated, treat this as a multi-bit error.

The diagram below is a flowchart version of the scrubbing routine.

A7695-01

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual

49. I²C Reset Condition/Lockup

Issue: Section 22.7 of the *i960*[®] *RM/RN I/O Processor Developer's Manual* states that software is responsible for ensuring the I²C bus is idle before enabling the unit after reset. If this guidance is not adhered to, the 80960 RM/RN could lock up the I²C bus by pulling SCL low and locking it in that state. If this does occur, it is possible to release the lock by toggling the I²C unit enable bit (bit 06) in the I²C Control Register (ICR - 1680H).

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual.

50. New PCI Clock Buffer

Issue: There is a new clock buffer recommended for 80960 RM/RN designs. While this new clock buffer has the same geometry and pin outs as the CY7B9910, it has the advantage of being spread spectrum aware and has a PLL lock time of 25 us. Contact Cypress Semiconductor for pricing and availability questions.

Manufacturer	Part Number
Cypress	W217 (new)
Cypress	CY7B9910

Affected Docs: i960[®] RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

51. Section 13.6.4 SDRAM Boundary Register 0 - SBR0

The guidance in this paragraph differs from the examples that are referenced. The second sentence should read:

If bank 0 is unpopulated, SBR0[5:0] is programmed with the same value as SBR1[5:0].

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual.

52. Section 13.6.5 SDRAM Boundary Register 1- SBR1

The guidance in this paragraph differs from the examples that are referenced. The second sentence should read:

If bank 0 is unpopulated, SBR1[5:0] is programmed with the same value as SBR0[5:0].

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual.

53. Section 13.2.3 Flash Write Cycle (pg 13-8)

The first sentence of the 4th paragraph should read:

"The MCU does not support bursting data to a Flash device since the flash device has no write buffers to support bursting data.

Affected Docs: *i960[®] RM/RN I/O Processor Developer's Manual.*

54. Section 11.5 Device Identification on Reset

The last sentence of the second paragraph should read:

"During initialization, the DEVICEID is placed in g0."

55. Table 21, line 7, Symbol "V_{OH1}", Notes Section Next to I_{OH} = -200uA (3) Add Note (6)

Note 6 should read: "Guaranteed by characterization."

Affected Docs: i960[®] RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

56. Section 5.0, pg 54, Last Sentence of the First Paragraph

This sentence should read: "During initialization, the DEVICEID is placed in g0."

Affected Docs: i960[®] RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

57. Section 13.4.1.2, System Assumptions

Change the first sentence in item 1 to the following.

P_RST# is asserted to the i960[®] RM/RN I/O processor, when there is at least 0.6 μ s of reliable power remaining and remains asserted as long as reliable power is available.

Affected Docs: i960® RM/RN I/O Processor Developer's Manual.

58. Section 13.4.1.2, System Assumptions

Add item #2 to the list of system assumptions for the power fail sequence.

2. The PCI clock will continue to run for at least 20 clock cycles after P_RST# is asserted. The i960® RM/RN requires a PCI clock operating in the specified range of 16-33Mhz in order to complete the power fail sequence and put the SDRAM in self-refresh mode

Affected Docs: i960® RM/RN I/O Processor Developer's Manual.

59. Section 8.0, Table 8-12, 80960RM Signals Requiring Pull-Up/Down Resistors

Remove the 4th signal: RAD[1]/32BITPCI_EN# from this table. It is enabled internally.

Affected Docs: i960® RM/RN I/O Processor Design Guide.

60. Section 9.5, VCCPLL Pins Requirement

The third sentence is changed to the following:

The trace lengths between the 4.7 μF capacitor, the 0.01 μF capacitor, and VCCPLL must be as short as possible.

Affected Docs: i960® RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

61. Section 10.2, Bulk Decoupling Capacitance

Remove the word "tantalum" from the third and fifth sentences.

Affected Docs: i960® RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

62. Section 14.1, Thermal Recommendations

The entire section is replaced with the following:

"Thermal data collected in worst case test conditions, (no airflow, an ambient temperature of 60° C with the processor executing a maximum power test), suggest the following guidance for heat sinks:

- 80960RM processor, under the conditions described above, does not require a passive heat sink.
- 80960RN processor, under the conditions described above, will require a passive heat sink.

For less than the worst case conditions above, customers can validate their own requirements for heat sinks, using anticipated air flows, ambient working temperatures, processor loads, and Section 3.2.2 (Thermal Analysis) of the 80960RN datasheet to determine if a heat sink is required for their application."

Affected Docs: i960® RM/RN I/O Processor Design Guide.

Status: Design Guide revised.

63. Section 4.3, VCCPLL Pins Requirement

The third sentence is changed to the following:

"The trace lengths between the 4.7 μF capacitor, the 0.01 μF capacitor, and VCCPLL must be as short as possible."

Affected Docs: 80960 RN/RM/RS I/O Processor Data Sheets.

Status: Datasheet revised.

64. Section 14.15.2 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: Add table 14-26a. - Device Identification register (DIDR) for the 80960RS.

Device Identification Register - DIDR (80960RS)

65. Section 15.7.2 of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Issue: Add Table 15-30a. - ATU Device Identification register (ATUDID) for the 80960RS

ATU Device Identification - ATUDID (80960RS)

Affected Docs: *i960[®] RM/RN I/O Processor Developer's Manual.*

66. Section 12.2.2 Bus Control Register - BCON of the *i*960[®] *RM/RN I/O Processor Developer's Manual*

Problem: Descriptions for Bit 02 and Bit 00 need to be reversed. The Register below is corrected.

Table 0-1. Bus Control Register – BCON

Section 7.0 of the i960[®] RM/RN I/O Processor Design Guide 67. **Problem:** Change title to read Intel® 80960RN Processor Signals Requiring Pull-Up/Down Resistors Affected Docs: i960[®] RM/RN I/O Processor Design Guide Section 8.0 of the i960[®] RM/RN I/O Processor Design Guide **68**. Change title to read Intel® 80960RM Processor Signals Requiring Pull-Up/Down Resistors **Problem:** Affected Docs: i960[®] RM/RN I/O Processor Design Guide Section 8.0, Table 8-12. of the i960[®] RM/RN I/O Processor Design Guide **69**. Remove RAD[2]/32BITMEM_EN# row with related data. **Problem:** Affected Docs: i960[®] RM/RN I/O Processor Design Guide Section 11.3.1.5 FAIL# Code of the *i*960[®] RM/RN I/O Processor Developer's 70. Manual **Problem:** The verbiage in this section is residual from the i960[®] Rx I/O Microprocessor Developer's Manual, where the internal bus was accessible from the outside. The internal bus is not accessible from the outside for i960 RM/RN I/O processor. Since the customer cannot "see" the internal bus, whatever is on it is not useful and is only confusing. Therefore, this section has been removed.

Affected Docs: i960[®] RM/RN I/O Processor Developer's Manual.

- 71. Table 13-13, page 13-31 of the *i960*® *RM/RN I/O Processor Developer's Manual*
- **Problem:** The error correction code can correct a single-bit error. An error of two or more bits will be treated the same. Delete the entire row in Table 13-13 which refers to "nibble. In the last row of the table, change "Double-bit" to "Multi-bit".

Affected Docs: i960® RM/RN I/O Processor Developer's Manual.

72. Section 13.3.7.3 of the *i*960® RM/RN I/O Processor Developer's Manual

Problem: The error correction code can correct a single-bit error. An error of two or more bits will be treated the same. In the first sentence of the paragraph following Table 13-13: "If decoding the syndrome indicates a double-bit or nibble error (Table 13-13), the transaction results in a target-abort." Change "double-bit or nibble error" to "multi-bit error".

Affected Docs: i960® RM/RN I/O Processor Developer's Manual.

73. Section 13.3.7.3 of the *i960*® *RM/RN I/O Processor Developer's Manual*

Problem: The error correction code can correct a single-bit error. An error of two or more bits will be treated the same. In the first sentence of the second paragraph following Table 13-13: "If error reporting is enabled in the ECCR and the MCU detects a nibble, single-bit, or double-bit error, the MCU stores the address in ECARx and the syndrome in ELOGx." Change "a nibble, single-bit, or double-bit error" to "a single-bit or multi-bit error".