he Maxim ICM7240／50／60 are programmable timer counters and the Maxim ICM7242 is a fixed timer／ counter．They require only $120 \mu \mathrm{~A}$ of supply current while generating delays from microseconds to days ach device combines a counter with an internal oscilator whose period is controlled by an externa and an external clock applied to the TB I／O terminal The programmable counters in the ICM7240／50／60 can e programmed using thumbwheel switches，jumpers， and analog switches．

The ICM7240 has an 8 bit programmable counter and can generate time delays from 1 to 255 RC time constants．The ICM 7250 has a two digit programmable BCD counter and can generate time delays from 1 to 99 RC time constants．The ICM7260 is used for＂real time applications and has a modulo 60 programmable constants．The ICM7242 has an 8 bit fixed counter and can generate a time delay of 1 and 128 RC time constants．These four devices are easily cascaded and can operate in either astable or monostable configura－ ions，using the on－chip control flip－flop with Trigger and Reset inputs．

Applications
The ICM7240／42／50／60 family is suitable for a wide
The ICM7240／42／50／60 family is suitable
ON／OFF Delay Timers
Batch Timer／Sequencer
Cycle Timers
Programmable Timers
Ulitra－Long Time Delay Generators
Typical Operating Circuit

－Improved Second Source！（See 3rd page for＂Maxim Advantage ${ }^{\text {TM．}}$ ．＂
Low Supply Current： $120 \mu \mathrm{~A}$
Timing from μ s to Days
－Shutdown Current less than $10 \mu \mathrm{~A}$
Programmable Fixed Couni
－Cascadable for Long Range Timing
－Monostable or Astable Operation
Low Power CMOS
Ordering Information

PART	TEMP．RANGE	package
ICM72401PE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead PLASTIC DIP
ICM7240IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7240C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
ICM72421PA	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead PLASTIC DIP
ICM7242 ${ }^{\text {d／JA }}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP
ICM7242C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
ICM72501PE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead PLASTIC
ICM72501JE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICMP250C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
ICM7260IPE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead PLASTIC
ICM72601JE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7260C／D	$0^{\circ} \mathrm{C}$ to	Dice

Pin Configuration
Top View

	7250／60	7240		$\xrightarrow{\sim}$			BUFFERED
	，	1				V^{+}	
＇s	${ }_{4}^{2}$	2	2			TB	
	${ }_{8}^{4}$	4	3			TBI／0	CAA
	10	16	$\stackrel{4}{5}$			MOD	
	20	32	－6			TRIGGER	
	40	64	［			RESET	
	${ }^{80}{ }^{*}$	128	－			GND	

Fixed and Programmable
 Timer／Counters

ABSOLUTE MAXIMUM RATINGS

input Voltage（Note）
ICM7240／42／50／60

Supply Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18 V Input Voltage（Note 1）	
ICM7240／50／60．	
ICM7242	
pins 5，6，7，8	（Gnd－0．3V）to（ $\mathrm{V}^{+}+0.3 \mathrm{~V}$ ）
Output Voitage	
ICM7240／50／60	
pins 1，，，，，，，5，，，7， 8	（Gnd－0．3V）to＋18V
pins 14，15	（Gnd－0．3V）to（ $\mathrm{V}^{+} 0.3 \mathrm{~V}$ ）

Output Voltage
ICM7242
ICM7242
Maximum Continuous Output
Curent（each output）
Current（each outp
Power Dissipation．
Derate at $-2 \mathrm{~mW} /{ }^{\circ} \circ \mathrm{C}$ above $25^{\circ} \mathrm{C}$
Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．．．．．． 200 mW Operating Temperature Range $\ldots \ldots \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature（soldering， 10 seconds）$\cdots \cdots . . .+30^{\circ} \mathrm{C}$

Note 1：Due to the SCR structure inherent in the CMOS process，connecting any terminal（except pins 1 through 8 on the ICM7240／50／60 voltages greater than V^{+}or less than Ground may cause destructive device latchup．For this reason，it is recommended that no CM $7240 / 42 / 50 / 60$ should be turned on first．Pins 1 through 8 in the ICM7240／50／60 are open drain devices and are rated to withstand 18 Volts with respect to ground（pin 9）．
Strosses above those histed under＂Ansolute Maximum Ratings＂may cause permanent damage to the device These are stress ratings only and tunctionai
operation of the device at these or any ther conditons above those indicated in the operational sections of the specifications is not impied．Exposure to
ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN．	TYP．	max．	UNITS
Guaranteed Supply Voltage	v^{+}		2		16	V
Supply Current 7240，50，60 7242	1^{+}	Reset Operating， $\mathrm{R}=10 \mathrm{k}$ ！． $\mathrm{C}=0.1 \mu \mathrm{~F}$ Operating， $\mathrm{R}=1 \mathrm{Ms}, \mathrm{C}=0.1 \mu \mathrm{~F}$ TB Inhibited，RC Connected to GND Operating，$R=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ Operating，$R=1 \mathrm{M} \mathrm{\Omega}, \mathrm{C}=0.1 \mu \mathrm{~F}$ TB Inhibited，RC Connected to GND		$\begin{aligned} & 125 \\ & 300 \\ & 120 \\ & 125 \\ & 340 \\ & 220 \\ & 225 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \\ & 800 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Timing Accuracy				5		\％
RC Oscillator Frequency Temperature Drift	$\Delta t / \Delta T$	（Exclusive of RC Drift）		250		ppm $/{ }^{\circ} \mathrm{C}$
Time Base Output Voitage	$V_{\text {отв }}$	$\begin{aligned} & I_{\text {SOURCE }}=1 \mathrm{~mA} \\ & I_{\text {SINK }}=3.2 \mathrm{~mA} \end{aligned}$	3.5	$\begin{gathered} 4.2 \\ 0.25 \end{gathered}$	0.6	v
Time Base Output Leakage Current	${ }_{\text {telk }}$	$\mathrm{RC}=$ Ground			25	$\mu \mathrm{A}$
Mod Voltage Level 7240／50／60	$V_{\text {MOD }}$	$\begin{aligned} & \mathrm{v}^{+}=5 \mathrm{~V} \\ & \mathrm{v}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \\ & 11.0 \end{aligned}$		v
Trigger Input Voltage	$V_{\text {TRIG }}$	$\begin{aligned} & V^{+}=5 V \\ & V^{+}=15 V \end{aligned}$		$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	v
Reset Input Voltage	$V_{\text {RST }}$	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{v}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	v
Max Count Toggle Rate 7240． 7242	$\mathrm{f}_{\text {t }}$	$\left.\begin{array}{l}V=2 V \\ V=5 V \\ V=15 V\end{array}\right]$ Counter／Divider Mode 50% Duty Cycle Input with Peak to Peak Voltages Equal to V^{+}and GND	2	$\begin{gathered} 1 \\ 6 \\ 6 \\ 13 \end{gathered}$		$\begin{aligned} & \overline{\mathrm{MHZ}} \\ & \mathrm{MHZ} \\ & \mathrm{MHz} \end{aligned}$
Max Counter Toggle Rate． 7250， 7260	f_{t}	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \text { (Counter/Divider Mode) } \end{aligned}$	1.5	5		MHz
Max Count Toggie Rate 7240，7250， 7260	f_{t}	Programmed Timer－Divider Mode			100	kHz
Output Saturation Voltage	$V_{\text {SAT }}$	All Outputs except TB Output $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{IOUT}=3.2 \mathrm{~mA}$		0.22	0.4	V
Output Leakage Current	louk	$\mathrm{V}^{+}=5 \mathrm{~V}$ ，per Output			1	$\mu \mathrm{A}$
Output Sourcing Current 7242	$I_{\text {source }}$	$\begin{aligned} & V^{*}=5 \mathrm{~V} \\ & \text { Terminals } 2 \& 3, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \end{aligned}$		300		$\mu \mathrm{A}$
MIN Timing Capacitor	C_{1}		10			pF
Timing Resistor Range	R_{t}	$\begin{aligned} & \mathrm{V}^{+} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}^{-} \leq 16 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 22 M \\ & 22 M \end{aligned}$	$!!$

descriptive excerpts from tha manutacturer＇s datia sheet have been included in this data sheet solety tor comparative purposes．
2

MVAXI／VI

Fixed And Programmable

 Timer／Counters| －Synchronous High Speed Operation | －Supply Current Guaranteed Over Temperature |
| :---: | :---: |
| －No False Clocking | －Standby Current Less Than $10 \mu \mathrm{~A}$ |
| －Increased Toggle Rate | －Signiticantly Improved ESD Protection（Note 1） |
| | Reliability |

ABSOLUTE MAXIMUM RATINGS：These devices conform to the Absolute Maximum ratings on the adjacent page．
ELECTRICAL CHARACTERISTICS：Specifications below satisfy or exceed all＂tested＂parameters on adjacent page

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Guaranteed Supply Voltage	v^{+}		2		16	V
Supply Current	${ }^{+}$	Reset，$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ Operating，$R=10 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ Operating， $\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$（Note 2） TB Inhibited，RC Connected to GND $-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\begin{aligned} & 125 \\ & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \\ & 800 \\ & 500 \\ & 10 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
Timing Accuracy		$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{R}=10 \mathrm{k} \Omega \mathrm{C}=0.1 \mu \mathrm{~F}$		5		\％
RC Oscillator Frequency Temperature Drift	H／JT	（Exclusive of RC Drift）		250		ppm $/{ }^{\circ} \mathrm{C}$
Time Base Output Voltage	$V_{\text {отв }}$	$\begin{aligned} & \mathbf{I}_{\text {SOURCE }}=1 \mathrm{~mA} \\ & I_{\text {SINK }}=3.2 \mathrm{~mA} \end{aligned}$	3.5	$\begin{gathered} 4.2 \\ 0.25 \\ \hline \end{gathered}$	0.6	\bar{v}
Time Base Output Leakage Current	$\mathrm{l}_{\text {tblk }}$	RC $=$ Ground			5	$\mu \mathrm{A}$
Time base Input Voltage	$\begin{aligned} & \mathbf{v}_{11} \\ & v_{1 H} \end{aligned}$		3.5		0.8	v
Mod Voltage Level 7240，50，60	$V_{\text {MOD }}$	$\begin{aligned} & V^{+}=5 V \\ & V^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.0 \\ & 12 \end{aligned}$		v
Trigger Input Voltage	$\mathrm{V}_{\text {trig }}$	$\begin{aligned} & \mathbf{v}^{+}=5 \mathrm{v} \\ & \mathrm{v}^{+}=15 \mathrm{v} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	1.6 3.5	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	v
Reset Input Voltage	$V_{\text {RST }}$	$\begin{aligned} & v^{+}=5 \mathrm{~V} \\ & \mathrm{v}^{+}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Trigger／Reset Input Current	$\begin{aligned} & I_{\text {TRIG }} \\ & I_{\text {RESEST }} \end{aligned}$	$-20^{\circ} \mathrm{C} \leqslant T_{A} \subseteq+85^{\circ} \mathrm{C}$		0.1	10	$\mu \mathrm{A}$
Max Count Toggle Rate 7240， 7242 7250， 7260	I_{1}	$\mathrm{v}^{+}=2 \mathrm{~V}$ Fixed Counter／ $\mathrm{v}^{+}=5 \mathrm{~V}$ Divider Mode $\mathrm{v}^{+}=15 \mathrm{~V}$ 50% Duty Cycle Input with Peak to Peak Voltages Equal to v^{+}and GND	3	$\begin{aligned} & 1 \\ & 8 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHZ} \end{aligned}$
Max Count Toggle Rate 7240，7250， 7260	f_{1}	Programmable Divide Mode （Note 2）	200			kHz
Carry Out Source Source Output Current Sink Output Current	$\mathrm{I}_{\mathrm{COH}}$	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}}=\mathrm{v}^{+}-1 \mathrm{~V} \\ & \mathrm{VOL}_{\mathrm{OL}}=+0.4 \mathrm{Volts} \end{aligned}$	$\begin{gathered} 300 \\ 3.2 \end{gathered}$			${ }_{m A}^{\mu A}$
Output Saturation Voltage	$V_{\text {SAT }}$	All Outputs except TB Output $\mathrm{V}^{+}=+5 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{S}, \mathrm{NK}}=3.2 \mathrm{~mA}$		0.22	0.4	V
Output Leakage Current	IoLk	$\mathrm{V}^{+}=+5 \mathrm{~V}$ ，per Output			1	$\mu \mathrm{A}$
Output Sourcing Current 7242	$I_{\text {source }}$	$\begin{aligned} & \mathbf{V}^{+}=+5 \mathrm{~V} \text { terminals } 2,8,3 \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+}-1 \mathrm{~V} \end{aligned}$	300			${ }_{\mu} \mathrm{A}$
MIN Timing Capacitor	C_{5}		10			DF
Timing Resistor Range	R	$\begin{aligned} & -V^{+} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+} \leq 16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{k} \\ & 1 \mathrm{k} \end{aligned}$		$\begin{aligned} & 22 \mathrm{M} \\ & 22 \mathrm{M} \end{aligned}$	$\begin{aligned} & \Omega \\ & ! \end{aligned}$
RC Input Leakage	$\mathrm{I}_{\text {c }}$	$\mathrm{RC}=2.5 \mathrm{~V}$			10	nA

[^0]Note 1：All pins are designed to withstand electrostatic discharge（ESD）levels in excess of 2000 V （Mil STD 883C Method 3015.2 Test
Note 2：Parameter is Q．A．sample tested．
MノXIルI

Fixed And Programmable Timer/Counters

Fixed And Programmable
 Timer／Counters

PIN NAME	PIN \＃		description
	ICM7240／50／60	ICM7242	
v^{+}	16	1	Positive power supply pin．
GND	9	4	Ground
RC	13	7	RC timing node．If this pin is grounded，the TB I／O pin is an external clock input．An external resistor and capacitor connected to this pin sets the frequency of the internal oscillator to $1 / R C$
Trigger	11	6	The Trigger input sets the internal control flip－flop to the Run state．If the counter is reset and TB V／O is low，a high on Trigger will clock the counter to the all Os count and counting will begin． If the counter is reset and TB I／O is high，a high level on Trigger will only set the control flip－flop．The counter will clock to the all Os count on the next falling edge of TB I／O，pro－ vided the control flip－flop is set
Reset	10	5	A high input on Reset while Trigger is low will reset the counter force all counter outputs high，and stop the counter by resetting the control flip－flop．The Reset input has no effect if Trigger is hign．
TB I／O	14	8	The TB I／O pin is an external clock input if the RC pin is grounded．If RC is not grounded the TB I／O pin is the timebase oscillator output．The Maxim TB I／O output is fully buffered and can drive up to 1000 pF of capacitance．
Carry Out	$\begin{gathered} 15 \\ (\text { ICM } 7250 / 60 \\ \text { only) } \end{gathered}$	－	Carry goes high during the last 10 counts－ 50 through 59 in the ICM 7260.90 through 99 in the ICM7250．To cascade two ICM 7250／60s，drive the TB I／O pin of one ICM7250／60 with the Carry Out of the other．（Use the $\div 128$ output to cascade ICM7240 and ICM7242．）
Buffered Reset	15	－	Buffered output of the Reset input of the control flip－flop．（Maxim ICM7240 only）
Counter Outputs	1－8		The ICM7240／50／60 outputs are open drain n－channel outputs which sink current when on and are open circuits when off．These outputs are TTL and CMOS compatible if a pullup resistor is connected to V^{+}
Counter Outputs	－	2.3	The ICM7242 outputs are logic outputs which both sink and source currents．The ICM7242 outputs are both TTL and CMOS compatible and do not require pullups．The ： 2 output is a square wave at \％the frequency of the onboard oscillator or external timebase．The $\div 128 / 256$ output is a square wave with a period 256 times the oscillator or external timebase period．This pin goes high 128 clock cycles after the counter is triggered．
MOD	12	－	Similar to the Control input of an ICM7555，this pin is connected to the resistor string that sets the oscillator thresholds．The internal resistor divider drives the Modulation（MOD） pin to 80% of V^{+}．Varying the MOD voltage will adjust the oscillator frequency．

ノVIAXI／VI

Fixed And Programmable

Timer／Counters

Circuit Description

The timing cycle is controlled by the internal control flip－flop．This set－reset flip－flop is set to the Run state by a high level on the Trigger input．A high level on the Rese provided Trigger is low Trigger overrides Reset i f both Trigger and Reset are high the control flip－flop is set to the Run state
When the control flip－flop is set to the run state the counter is set to all Os（all outputs low），the timebase input is also enabled，and the counter will increment with each negative－going edge at TB I／O．
A high level on the Reset input while Trigger is low resets the control flip－flop．The flip－flop resets the counter forcing all the counter outputs high，inhibiting the counter from being incremented，and unless in the external timebase mode，turns on the internal pullup connected to the RC pin
The RC oscillator period is set by an external resistor and capacitor．The external resistor charges the capac itor to 80% of V^{+}．This voltage is detected at the RC terminal，TB I／O goes low，the counter increments one count，and the internal discharge transistor rapidly discharges the capacitor to 45% of V^{+}．When the discharge transistor turns off，TB I／O goes high，and the external capacitor again starts to charge through the external resistor．The period of each oscillator cycle is 1.0 RC
In many applications，one or more of the counter outputs can be used to reset the counter after a programmed count is completed．With no outputs connected back to the Reset pin，the circuit operates in the astable（free running）mode

Applications
Figure 2 shows a basic programmable Time Delay Figure 2 shows a basic programmable time delay． When the circuit is triggered all outputs go low．When the programmed count is reached，the heset input is pulled high by the $10 \mathrm{k} \Omega$ resistor，resetting the counter． The programming can be achieved by using either
mechanical switches such as thumbwheel or DIP switches，or analog switches such as the CD4016 and CD4066．

Output Count Programming
（ICM7240／50／60）
The counteroutputs on the ICM7240／50／60 are open－drain－ channel FETs，enabling a＂wired－OR＂connection to be chieved by shorung in In desired outputs with can be programmed from

1RC to 255RC（ICM7240）
1RC to 99RC（ICM7250）
1RC to 59RC（ICM7260）
Programming the ICM7240／50／60 can achieved by hard wiring

Fixed And Programmable Timer/Counters

ICM7242 Counter Outputs The ICM7242 is a non-programmable timer/counter The outputs on the ICM7242 are inverters which both source and sink current, unlike the open drain N current. The ICM7242 output inverters eliminate the need for external pull-up resistors.
Outputs on pins 2 and 3 are $\div 2$ and $\div 28$ respectively. To Outputs on pins 2 and 3 are $\div 2$ and $\div 2^{8}$ respectively. To 7 (RC) to ground and drive pin 8 (TB I/O) with an external timebase. For monostable applications connec the $\div 2^{8}$ output to the reset pin

Programmable Divider
With the addition of an RC network betweeen the Rese and Trigger inputs, the circuit of Figure 3 becomes programmable divider. The outputperiod is N times the oscillator (or external input) period, where N is the The $56 \mathrm{k} \Omega$ and 30 pF RC network drives the Trigger high approximately $7 \mu \mathrm{~S}$ after Reset goes high, retriggering the counter and starting the cycle again. For high

speed operation the capacitor should be reduced to 39 pF and the $10 \mathrm{k} \Omega$ pullup resistor reduced to $2.2 \mathrm{k} \Omega$.

Competitive Comparison

Maxim's ICM7240/42/50/60 devices are upwardly compatible with intersil's devices. The counters use phe used in Intersil's parts in the programmabie divider mode the maximum frequency of operation is limited by the propagation delay across the counter and the reset delay of the flip-flop. These delays musi be less than one half the timebase period, for reliable operation
Maxim's ICM7240 has a Buifered Reset Output on pin 15 versus a No Connection on Intersil's part. This output is a buffered cutput from the reset line for the counters contained with in the ICM7240, so that when the device is being used in he programable divider output. output
When Maxim's devices are operated with the timebase inhibited (RC pin grounded) and the counter is eset, the supply current for the Maxim part is guaran at +5 Volts and 20 mA at +16 Volts for the Intersil part.
The TB I/O output has significantly improved drive capability and can drive up to $1,000 \mathrm{pF}$ of load capacitance versus 50pf for the intersil part. Maxim s devices are also less sensitive than Intersil's to the rate of change of the input waveform at TB I/O when in the external clock mode. This reduces the poss bility of fase triggering on slow falling clock
waveforms.

$$
5
$$

Sequence Tim Figure 4 shows how to cascade multiple counters to perform more complex control functions

Figure 4. Sequence Timer Using ICM7242

Fixed And Programmable
Timer／Counters

Figure 5．Timing Diagram for Sequence Timer of Figure 4.

Maxim cannot assume responsibitity for use of any circuitry other than circuitry entrefy embocied in a Maxim product No circuit patent icenses are implied
Maxim reserves the Maxim reserves the erght to change the crrcuity and specifications without notice at any time

[^0]: 09／09／Zゅ／OゅてLWつI

