Description

The ICX074AK is a $1 / 2$-inch optical interline CCD solid-state image sensor with a square pixel array which supports VGA format. Progressive scan allows all pixels signals to be output independently within approximately $1 / 60$ second. This chip features an electronic shutter with variable chargestorage time which makes it possible to realize fullframe still image without a mechanical shutter. High resolution and high color reproductivity are achieved through the use of R, G, B primary color mosaic filters.
Further, high sensitivity and low dark current are achieved through the adoption of HAD (HoleAccumulation Diode) sensors.
This chip is suitable for image input and processing applications.

Features

- Progressive scan allows individual readout of the image signals from all pixels.
- High vertical resolusion (480TV-lines) still picture without a mechanical shutter.
- Square pixel unit cell
- VGA format-compatible
- R, G, B primary color mosaic filters on chip
- High resolution, high color reproductivity, high sensitivity, low dark current
- Continuous variable-speed shutter
- Low smear
- Excellent antiblooming characteristics
- Reset gate: 5V drive (bias: no adjustment)

Device Structure

- Optical size:
- Number of effective pixels:
- Total number of pixels:
- Interline CCD image sensor
- Chip size:
- Unit cell size:
- Optical black:
- Number of dummy bits:
- Substrate material:

Optical black position
(Top View)

[^0]
Block Diagram and Pin Configuration

(Top View)

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	HIG $\phi 1$	Test pin *2	12	VDD	Supply voltage
2	HIS	Test pin *2	13	RG	Reset gate clock
3	Vф3	Vertical register transfer clock	14	VL	Protective transistor bias
4	Vф2	Vertical register transfer clock	15	SUB	Substrate (overflow drain)
5	V $\phi 1$	Vertical register transfer clock	16	H $\phi 1$	Horizontal register transfer clock
6	VHOLD ϕ	Vertical register final stage accumulation clock	17	Hф2	Horizontal register transfer clock
7	GND	GND	18	HHG $\phi 1$	Inter-horizontal register transfer clock
8	CGG1	Output amplifier 1 gate *1 decoupling capacitor	19	HHG $\phi 2$	Inter-horizontal register transfer clock
9	Vout1	Signal output 1	20	HIG2	Test pin *2
10	CGG2	Output amplifier 2 gate *1 decoupling capacitor	21	POG ϕ	Test pin *2
11	VouT2	Signal output 2	22	VOG ϕ	Vertical register final stage transfer clock

*1 DC bias is applied within the CCD, so that this pin should be grounded externally through a capacitance of $1 \mu \mathrm{~F}$ or more.
*2 Regarding the test pins: apply the same voltage as the supply voltage to HIS, and ground HIGф1, HIG2, and POG ϕ.

Absolute Maximum Ratings

Item		Ratings	Unit	Remarks
Substrate voltage SUB－GND		－0．3 to＋55	V	
Supply voltage	Vdd，Vout1，Vout2，HIS，Cgg1，Cgg2－GND	－0．3 to＋18	V	
	Vdd，Vout1，Vout2，HIS，Cgg1，Cgg2－SUB	-55 to +10	V	
Clock input voltage		－15 to＋20	V	
	$\mathrm{V}_{\phi 1}$ ， $\mathrm{V}_{\phi 2}$ ， $\mathrm{V}_{\phi 3}$ ，VHOLD ${ }^{\text {，VOG }}$－SUB	to +10	V	
Voltage difference between vertical clock input pins		to +15	V	＊1
Voltage difference between horizontal clock input pins		to +17	V	
$\mathrm{H}_{\phi 1}, \mathrm{H}_{\phi} 2$－VOG ϕ		-17 to +17	V	
H中1，H中2－GND		-10 to +15	V	
H中1，H中2－SUB		-55 to +10	V	
VL－SUB		-65 to＋0．3	V	
Vф2，Vф3，Vdd，Vout1，Vout2，HIS，HIGф1，HIG2，POG ${ }_{\text {－VL }}$		-0.3 to +27.5	V	
RG－GND		-0.3 to＋22．5	V	
Vф1，CGG1，CGG2，H\＄1，Hф2，HHG 1 ，HHGф2，VOG ${ }^{\text {，VHOLD }}$－VL		-0.3 to +17.5	V	
Storage temperature		-30 to＋80	${ }^{\circ} \mathrm{C}$	
Operating temperature		-10 to +60	${ }^{\circ} \mathrm{C}$	

[^1]Bias Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply voltage	VDD	14.55	15.0	15.45	V	
Substrate voltage adjustment range	VSUB	9.0		18.5	V	$*_{1}$
Substrate voltage adjustment precision		Indicated voltage -0.1	Indicated voltage	Indicated voltage +0.1	V	
Protective transistor bias	VL					

DC Characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply current	IDD		10		mA	
Input current	IIN1			1	$\mu \mathrm{~A}$	$* 3$
Input current	IIN2			10	$\mu \mathrm{~A}$	$* 4$

*1 Indications of substrate voltage (Vsub) setting value
The setting value of the substrate voltage is indicated on the back of image sensor by a special code. Adjust the substrate voltage (Vsub) to the indicated voltage.

$$
\begin{array}{rcl}
\text { VsuB code - two characters indication } & \square & \square \\
& \uparrow & \uparrow \\
\text { Integer portion } & \text { Decimal portion }
\end{array}
$$

The integer portion of the code and the actual value correspond to each other as follows.

Integer portion of code	9	A	C	d	E	f	G	h	J	K
Value	9	10	11	12	13	14	15	16	17	18

<Example> "A5" \rightarrow Vsub $=10.5 \mathrm{~V}$.
*2 VL setting is the VvL voltage of the vertical transfer clock waveform, or the same power supply as the VL power supply for the V driver should be used.
*3 (1) Current to each pin when 18 V is applied to Vdd, Vout1, Vout2, HIS, RG, CgG1, CgG2, GND and SUB pins, while all pins that are not tested are grounded.
(2) Current to each pin when 20V is applied sequentially to $\mathrm{V}_{\phi 1}, \mathrm{~V}_{\phi 2}$ and $\mathrm{V}_{\phi 3}$ pins, while all pins that are not tested are grounded. However, 20 V is applied to SUB pin.
(3) Current to each pin when 15 V is applied sequentially to $\mathrm{RG}, \mathrm{H} \phi 1$ and $\mathrm{H} \phi 2$ pins, while all pins that are not tested are grounded. However, 15 V is applied to SUB pin.
(4) Current to VL pin when 25 V is applied to $\mathrm{V}_{\phi 2}$, $\mathrm{V}_{\phi 3}$, POG , HIGф1, HIG2, Vdd, Vout1 and Vout2 pins or
 pin is grounded. However, GND and SUB pins are left open.
(5) Current to GND pin when 20 V is applied to the RG pin and the GND pin is grounded.
*4 Current to SUB pin when 55 V is applied to SUB pin, while pins that are not tested are grounded.

Clock Voltage Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	Vvt	14.55	15.0	15.45	V	1	
Vertical transfer clock voltage	Vvi02	-0.05	0	0.05	V	2	$\mathrm{VVH}=\mathrm{V} \mathrm{VH} 02$
	Vvin1, Vvin2, Vvi3	-0.2	0	0.05	V	2	
	Vvl1, VVl2, Vvl3	-8.0	-7.5	-7.0	V	2	VVL $=(\mathrm{VVL01}+\mathrm{VVL03}) / 2$
	$\mathrm{V} \phi \mathrm{V}$	6.8	7.5	8.05	V	2	$\mathrm{V} \phi \mathrm{V}=\mathrm{VvHn}-\mathrm{Vv}$ Ln ($\mathrm{n}=1$ to 3)
	I VVL1 - Vvl3 I			0.1	V	2	
	VvhH			0.5	V	2	High-level coupling
	VVHL			0.5	V	2	High-level coupling
	VVLH			0.5	V	2	Low-level coupling
	VVLL			0.5	V	2	Low-level coupling
Horizontal transfer clock voltage	V ${ }_{\text {¢ }}$	4.75	5.0	5.75	V	3	
	VHL	-0.05	0	0.05	V	3	
Reset gate clock voltage	V $\chi_{\text {RG }}$	4.5	5.0	5.5	V	4	Input through $0.01 \mu \mathrm{~F}$ capacitance
	Vrglh - Vrgll			0.8	V	4	Low-level coupling
	Vrgh	$\begin{aligned} & \text { VDD } \\ & +0.4 \end{aligned}$	$\begin{gathered} \hline \text { VDD } \\ +0.6 \end{gathered}$	$\begin{aligned} & \text { VDD } \\ & +0.8 \end{aligned}$	V	4	
Substrate clock voltage	Vфsub	21.5	22.5	23.5	V	5	
Vertical final stage accumulation clock voltage transfer clock voltage	Vvholdh, Vvogh	-0.05	0	0.05	V	6	
	Vvholdl, Vvogl	-8.0	-7.5	-7.0	V	6	
Inter-horizontal register transfer clock voltage	Vhhgih, VhHg2h	4.75	5.0	5.25	V	7	
	VhhgiL, Vhhgal	-8.0	-7.5	-7.0	V	7	
	Vhнgim, Vhнg2m	-0.05	0	0.05	V	7	

Clock Equivalent Circuit Constant

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Capacitance between vertical transfer clock and GND	CфV1		3300		pF	
	Cфv2		4700		pF	
	Cфv3		4700		pF	
Capacitance between vertical transfer clocks	CфV12		1000		pF	
	Cфv23		22		pF	
	CфV31		100		pF	
Capacitance between vertical final stage accumulation clock and GND	Cфvhold		19		pF	
Capacitance between vertical final stage transfer clock and GND	Cфvog		12		pF	
Capacitance between inter-horizontal register transfer clock and GND	CфннG1		23		pF	
	CфHHG2		19		pF	
Capacitance between horizontal transfer clock and GND	CфH1		60		pF	
	Сфн2		69		pF	
Capacitance between horizontal transfer clocks	Сфнн		40		pF	
Capacitance between reset gate clock and GND	CфRg		9		pF	
Capacitance between substrate clock and GND	Cфsub		400		pF	
Vertical transfer clock series resistor	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$		10		Ω	
Vertical transfer clock ground resistor	Rgnd		15		Ω	
Horizontal transfer clock series resistor	RфH1		24		Ω	
	Rфн2		30		Ω	

Vertical transfer clock equivalent circuit

Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

(1) Readout clock waveform

(2) Vertical transfer clock waveform

V ${ }_{\phi 1}$

V ${ }^{2} 2$

Vфз

$\mathrm{VVH}=\mathrm{VVH02}$
$\mathrm{VVL}=(\mathrm{VVL01}+\mathrm{VVL03}) / 2$
$\mathrm{V}_{\phi} \mathrm{V} 1=\mathrm{VVH}_{1}-\mathrm{VVLO}_{1}$
$\mathrm{V} \phi \mathrm{V} 2=\mathrm{V} \mathrm{VH} 02-\mathrm{VVL2}$
V ф $\mathrm{V} 3=\mathrm{V}$ VH3 -V LLO3

(3) Horizontal transfer clock waveform

(4) Reset gate clock waveform

Vrgle is the maximum value and Vrgll is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, Vrgl is the average value of Vrglh and Vrgll.

$$
\mathrm{V}_{\mathrm{RGL}}=\left(\mathrm{V}_{\mathrm{RGLL}}+\mathrm{V}_{\mathrm{RGLL}}\right) / 2
$$

Assuming Vrgh is the minimum value during the interval twh, then:

$$
V_{\phi R G}=V_{R G H}-V_{R G L}
$$

(5) Substrate clock waveform

(6) Vertical final stage accumulation clock waveform • Vertical final stage transfer clock waveform

(7) Inter-horizontal register transfer clock waveform

HHG ${ }^{1}$, HHG ${ }^{2} 2$

Clock Switching Characteristics

Item	Symbol	twh			twl			tr			tf，tf1，tf2			Unit	Remarks
		Min．	Typ．	Max．											
Readout clock	V ${ }_{\text {T }}$	2.3	2.5						0.5			0.5		$\mu \mathrm{s}$	During readout
Vertical transfer clock	V $\phi 1$ ， Vф2，Vф3										15		350	ns	＊1
흥	H\＄1	24	29		26	31			10	17.5		10	17.5	ns	＊2
㐫	H中2	26	31		24	29			10	15		10	15		
During parallel－ serial conversion	$\mathrm{H}_{\phi 1}$								0.01			0.01		$\mu \mathrm{s}$	
	H中2								0.01			0.01			
Reset gate clock	¢RG	11	13			64			2			2		ns	
Substrate clock	¢SUB	1.6	1.9							0.5			0.5	$\mu \mathrm{s}$	During drain charge
Vertical final stage accumulation／ transfer clock	VHOLD ϕ								20			20		ns	
	VOG ϕ								20			20		ns	
Inter－horizontal register transfer clock	HHG ${ }^{1}$								20			20		ns	
	HHG ${ }^{2}$								20			20		ns	

＊1 When vertical transfer clock driver CXD1268M is used．
${ }^{2} \mathrm{tf} \geq \mathrm{tr}-2 \mathrm{~ns}$ ，and the cross－point voltage（VCR）for the $\mathrm{H}_{\phi 1}$ rising side of the $\mathrm{H}_{\phi 1}$ and $\mathrm{H} \phi 2$ waveforms must be at least 2.5 V ．

Item	Symbol	two		Unit	Remarks	
			Min．			
Horizontal transfer clock	$\mathrm{H} \phi 1, \mathrm{H} \phi 2$	24	29		ns	$* 3$

＊3 The overlap period for twh and twl of horizontal transfer clocks $\mathrm{H} \phi 1$ and $\mathrm{H} \phi 2$ is two．

Image Sensor Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item		Symbol	Min.	Typ.	Max.	Unit	Measurement method	Remarks
G sensitivity	Sg	200	300		mV	1		
Sensitivity comparison	R	Rr	0.3	0.45	0.6		1	
	B	Rb	0.4	0.55	0.7		1	
Saturation signal	Vsat	500			mV	2	$\mathrm{Ta}=60^{\circ} \mathrm{C}$	
Smear	Sm		0.002	0.007	$\%$	3		
Video signal shading	SHg			25	$\%$	4	Zone 0	
Uniformity between video signal channels	$\Delta \mathrm{Srg}$			8	$\%$	5		
	$\Delta \mathrm{Sbg}$			8	$\%$	5		
Dark signal	Vdt			2	mV	6	$\mathrm{Ta}=60^{\circ} \mathrm{C}$	
Dark signal shading	$\Delta \mathrm{Vdt}$			1	mV	7	$\mathrm{Ta}=60^{\circ} \mathrm{C}$	
Lag	Lag			0.5	$\%$	8		

Note) All the characteristic data of this image sensor was yielded when the sensor was operated in the $1 / 60$ s interlaced mode.

Zone Definition of Video Signal Shading

Measurement System

CCD signal output 1

Note) Adjust the amplifier gain so that the gain between [$\left.{ }^{*} \mathrm{~A}\right]$ and $\left[{ }^{*} \mathrm{C}\right]$, and between [*B] and [* D] equals 1 .

Composition of color coding and output signal

The color filters of this image sensor are arranged in the layout shown in the figure below.

Gb	B	Gb	B
R	Gr	R	Gr
Gb	B	Gb	B
R	Gr	R	Gr

Gr and Gb denote the G signals on the same line as the R signal and the B signal, respectively.

© Readout modes

The output methods for the two readout modes indicated below are now described.

1. $1 / 60$ s interlaced

In this mode, the signals are output in a $1 / 60$ s period using the two output pins (Vout1, Voutr).
The signals from two adjacent horizontal lines are simultaneously output from the respective output pins. The lines output from the output pins are changed over with each field. The Vout1 signal after it has passed through the CDS and other external circuits or the signal produced by adding the Vout1 and Vout2 signals accommodate interlaced scanning. In the Odd field, R signal and Gr signal are output from Vout1 pin and Gb signal and B signal are output from Vout2 pin. In the Even field, Gb signal and B signal are output from Vout1 pin and R signal and Gr signal are output from Vout2 pin.
2. $1 / 30$ s non-interlaced

In this mode, the signals are output in a $1 / 30$ s period using only one output pin (Vout1).
Unlike the $1 / 60$ s interlaced mode described above, the external circuit can be simplified. The imaging characteristics also differ from those of the other modes. R signal and Gr signal lines and Gb signal and B signal lines are output sequentially from Vouti pin only.

Image Sensor Characteristics Measurement Method

© Measurement conditions

1) In the following measurements, the substrate voltage is set to the value indicated on the device, and the device drive conditions are at the typical values of the bias and clock voltage conditions.
2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, which is taken as the value of the $\mathrm{Gr} / \mathrm{Gb}$ signal output or R/B signal output of signal output 1 in the measurement system.
3) In the following measurements, this image sensor is operated in $1 / 60$ s interlaced mode.

© Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance $706 \mathrm{~cd} / \mathrm{m}^{2}$, color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S ($\mathrm{t}=1.00 \mathrm{~mm}$) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.
2) Standard imaging condition II :

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S $(t=1.00 \mathrm{~mm})$ as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. G sensitivity, sensitivity comparison

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of $1 / 100$ s, measure the signal outputs ($\mathrm{VGr}_{\mathrm{Gr}}, \mathrm{V}_{\mathrm{Gb}}, \mathrm{V}_{R}$ and V_{B}) at the center of each $\mathrm{Gr}, \mathrm{Gb}, \mathrm{R}$ and B channel screens, and substitute the values into the following formula.

$$
\begin{aligned}
& \mathrm{VG}=\left(\mathrm{VGr}+\mathrm{VGb}_{\mathrm{G}}\right) / 2 \\
& \mathrm{Sg}=\mathrm{V}_{\mathrm{G}} \times \frac{100}{60}[\mathrm{mV}] \\
& \mathrm{Rr}=\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{G}} \\
& \mathrm{Rb}=\mathrm{V}_{\mathrm{B}} / \mathrm{VG}_{\mathrm{G}}
\end{aligned}
$$

2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr signal output, 150 mV , measure the minimum values of the $\mathrm{Gr}, \mathrm{Gb}, \mathrm{R}$ and B signal outputs.

3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the average value of the Gr signal output to 150 mV . Measure the average values of the Gr signal output, Gb signal output, R signal output and B signal output (Gra, Gba, Ra and Ba), and then adjust the luminous intensity to 500 times the intensity with average value of the Gr signal output, 150 mV . After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Sm1 [mV]) of signal output 1 and the maximum value ($\mathrm{Sm} 2[\mathrm{mV}]$) of signal output 2, and substitute the values into the following formula.
$\mathrm{Sm}=\frac{\mathrm{Sm} 1+\mathrm{Sm} 2}{2} \div \frac{\mathrm{Gra}+\mathrm{Gba}+\mathrm{Ra}+\mathrm{Ba}}{4} \times \frac{1}{500} \times \frac{1}{10} \times 100[\%](1 / 10 \mathrm{~V}$ method conversion value $)$

4. Video signal shading

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Gr signal output is 150 mV . Then measure the maximum (Grmax [mV]) and minimum (Grmin [mV]) values of the Gr signal output and substitute the values into the following formula.
$\mathrm{SHg}=(\mathrm{Grmax}-\mathrm{Grmin}) / 150 \times 100[\%]$

5. Uniformity between video signal channels

After measuring 4, measure the maximum (Rmax $[\mathrm{mV}]$) and minimum ($\mathrm{Rmin}[\mathrm{mV}]$) values of R signal, and the maximum (Bmax $[\mathrm{mV}]$) and minimum ($B \min [\mathrm{mV}]$) values of B signal. Substitute the values into the following formula.
$\Delta \operatorname{Srg}=(\operatorname{Rmax}-\operatorname{Rmin}) / 150 \times 100[\%]$
$\Delta \mathrm{Sbg}=(\mathrm{Bmax}-\mathrm{Bmin}) / 150 \times 100[\%]$
6. Dark signal

Measure the average value of the signal output $1(\mathrm{Vdt}[\mathrm{mV}])$ with the device ambient temperature $60^{\circ} \mathrm{C}$ and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.
7. Dark signal shading

After measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output 1 and substitute the values into the following formula.
$\Delta \mathrm{Vdt}=\mathrm{Vdmax}-\mathrm{Vdmin}[\mathrm{mV}$]

8. Lag

Adjust the Gr signal output value generated by strobe light to 150 mV . After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula.
$\operatorname{Lag}=(\mathrm{Vlag} / 150) \times 100[\%]$

Drive Circuit

I
0

Spectral Sensitivity Characteristics

(Includes lens characteristics, excludes light source characteristics)

1/60s interlaced mode
Drive Timing Chart (Horizontal Sync)

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.
a) Either handle bare handed or use non-chargeable gloves, clothes or material.

Also use conductive shoes.
b) When handling directly use an earth band.
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
d) Ionized air is recommended for discharge when handling CCD image sensor.
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.
2) Soldering
a) Make sure the package temperature does not exceed $80^{\circ} \mathrm{C}$.
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground.
3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.
a) Operate in clean environments (around class 1000 is appropriate).
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces.

Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
4) Do not expose to strong light (sun rays) for long periods, color filters will be discolored. For continuous using under cruel condition exceeding the normal using condition, consult our company.
5) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
6) CCD image sensors are precise optical equipment that should not be subject to too much mechanical shocks.
Package Outline

PACKAGE STRUCTURE

PACKAGE MATERIAL	Cer-DIP
LEAD TREATMENT	TIN PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	2.6 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: ＊1＋27V（Max．）when clock width $<10 \mu \mathrm{~s}$ ，clock duty factor $<0.1 \%$ ．

