

FEATURES

- The multi-queue DDR flow-control device contains 4 Queues each queue has a fixed size of:
IDT72T51248-8,192 $\times 40$ or $16,384 \times 20$ or $32,768 \times 10$
IDT72T51258-16,384 $\times 40$ or $32,768 \times 20$ or $65,536 \times 10$
IDT72T51268-32,768 $\times 40$ or $65,536 \times 20$ or $131,072 \times 10$
- Write to and Read from the same queue or different queues simultaneously via totally independent ports
- Up to 200 MHz operation of clocks
- Double Data Rate, DDR is selectable, providing up to 400 Mbps bandwidth per data pin
- User selectable Single or Double Data Rate modes on both the write port and read port
- 100% Bus Utilization, Read and Write on every clock cycle
- Global Bus Matching - All Queues have same Input bus width and same Output bus width
- User Selectable Bus Matching options:
- x40in to x40out
- x40in to x20out
- x40in to x10out
- x20in to x40out - x20in to x200ut
- x20in to x10out
-x10in to x40out -x10in to x20out -x10in to x10out
- All I/O is LVTTL/ HSTL/ eHSTL user selectable
- 3.3V tolerant inputs in LVTTL mode
- ERCLK \& EREN Echo outputs on read port
- Write Chip Select WCS input for write port
- Read Chip Select RCS input for read port
- User Selectable IDT Standard mode (using EF and $\overline{\mathrm{FF}}$) or FWFT mode (using $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$)
- All 4 Queues have dedicated flag outputs $\overline{\mathrm{FF}} / \overline{\mathrm{R}}, \overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{PAF}}$ and $\overline{\text { PAE }}$
- A Composite Full/ Input Ready Flag gives status of the queue selected on the write port
- A Composite Empty/ Output Ready flag gives status of the queue selected on the read port
- Programmable Almost Empty and Almost Full flags per Queue
- Dedicated Serial Port for flag programming
- A Partial Reset is provided for each queue
- Power Down pin minimizes power consumption
- 2.5V Supply Voltage
- Available in a 324-pin Plastic Ball Grid Array (PBGA) $19 \mathrm{~mm} \times 19 \mathrm{~mm}$, 1 mm Pitch
- JTAG port provides boundary scan function and optional programming mode
- Low Power, High Performance CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

The multi-queue DDRflow-control devices are ideal for many applications wherefunctionssuch as datadifferentiationand parallelbuffering of multiple data paths are required. These applications may include communication and networking systems such as routers, packetprioritization systems, data acquisition systems, imaging systems andmedical equipment.

The IDT72T51248/72T51258/72T51568 multi-queue DDR flow-control devices are a single chip with four discrete FIFO queues available. All four queues have a fixed density and based on the bus matching arrangement can take the following memory arrangement: For the IDT72T51248, fourqueues each queue being $8,192 \times 40$ or $16,384 \times 20$ or $32,768 \times 10$. For the IDT72T51258, four queues each queue being $16,384 \times 40$ or $32,768 \times 20$ or $65,536 \times 10$. Forthe IDT72T51268, fourqueues eachqueue being $32,768 \times 40$ or $65,536 \times 20$ or $131,072 \times 10$.

All queues within the device have a common data inputbus (write port) and acommon dataoutputbus (read port). Data written intothe write port is directed to a respective queue via an internal de-multiplex operation, the queue being address by the user via a two bitinput select bus. Data read from the read port is accessed from a respective queue via an internal multiplex operation, addressed by the user via a two bit output select bus. Data write and read operations are totally independent of each other, a queue may be selected on the write portand adifferent queue selected on the read port, orboth ports may selectthe same queue simultaneously.

Bus matching is provided on this device, the bus width selection is 'Global' which means that all four queues will have a fixed input width and a fixed output width. The write port bus width may be $\mathrm{x} 10, \mathrm{x} 20$ or x 40 and the read port bus width may be $\mathrm{x} 10, \mathrm{x} 20$ or x 40 . When bus matching is used the device ensures the logical transfer of data throughput in a Little Endian manner.

As is typical with most IDT FIFO's, two types of data transfer are available, IDT Standard mode and First word Fall Through (FWFT) Mode. This affects the device operation and also the flag outputs. The device provides four dedicatedflagoutputsforall internalQueue's. Theseflags are: Full/InputReady flag, Empty/Output Ready flag, Programmable AlmostEmptyflag and Programmable AlmostFull. The programmableflags have default values, but can also
be setby the userto any point withinthe Queue depth. These programmable flags can also be configured by the userfor either Synchronous or Asynchronous operation. The device also provides composite flags.

The multi-queue DDR device is capable of up to 200MHz operation on both write clock and read clockinputs, these clocks being totally independent of each other. Along with this high speed of operation the device ports are selectable between Single Data Rate, SDR mode and Double Data Rate, DDR mode. If Double Data Rate mode is selected data can be written into or read out of a Queue on every rising and falling edge of a respective clock. For example, if the write clock is running at 200 MHz and the write port is set-up for DDR mode a data input pin has a bandwidth of 400 Mbps , so for a 40 bit wide bus a total bandwidth of 16 Gbps can be achieved.

The read port provides the userwith a dedicated Echo Read Enable, $\overline{\mathrm{EREN}}$ and Echo ReadClock, ERCLKoutput. Theseoutputs arehelpful inhigherspeed applications. Otherwise known as "Source Synchronous clocking" the echo outputs provide tighter synchronization of the data transmitted from the multiqueue flow-control device and the read clock being received at the downstream device.
A Master Reset input is provided and all set-up and configuration pins are latched with respecttoaMasterReset. For example, the bus width requirements are selected at Master Reset. A Partial Reset is provided for each internal Queue. When a Partial Reset is performed on a Queue, the read and write pointers of thatQueue only are resettothefirstmemorylocation. Allotherpointers remainthe same.
The device also has the capability of operating its I/O at either2.5V LVTTL, 1.5V HSTL or 1.8 V eHSTL levels. A Voltage Reference, Vref inputis provided for HSTL and eHSTL interfaces. The type of $/ / O$ is selected viathe IOSEL pin. The core supply voltage of the device, Vcc is always 2.5 V , however the output pinshave aseparate supply, VDDQwhich canbe2.5V, 1.8V or 1.5V. The device also offers significant power savings in HSTL/eHSTL mode, most notably achieved by the presence of a Power Down input, $\overline{\mathrm{PD}}$.

A JTAG test port is provided. The multi-queue DDR device has a fully functional Boundary Scanfeature, compliant with IEEE 1149.1 Standard Test Access Portand Boundary Scan Architecture. The JTAG portcan also be used to program the device set-up as described later in this document.

Figure 1. Multi-Queue DDR Flow-Control Device Block Diagram

PIN CONFIGURATION

NOTE:

1. DNC - Do Not Connect.

PBGA: 1 mm Pin Pitch, $19 \mathrm{~mm} \times 19 \mathrm{~mm}$ (BB324-1, order code: BB) TOP VIEW

PIN DESCRIPTIONS

Symbol	Name	I/OTYPE	Description
$\overline{\mathrm{CEF}} / \overline{\mathrm{COR}}$	Composite Empty/ Composite Output Ready Flag	HSTL-LVTTL OUTPUT	This flag will represent the exact status of the current Queue being read without the user having to observe the correct Queue empty flag.
$\overline{\mathrm{CFF} / \mathrm{CIR}}$	Composite Full/ Composite Input Ready flag	HSTL-LVTTL OUTPUT	This flag will represent the exact status of the current Queue being written without the user having to observe the correct Queue full flag.
$\begin{array}{\|l} \hline \mathrm{D}[39: 0] \\ \mathrm{Din} \end{array}$	Data InputBus	LVTTL INPUT	These arethe 40 data inputpins. Datais written into the device viathese inputpins on the rising edge of WCLK and/or the falling edge in DDR mode provided WEN is LOW. Due to bus-matching notal inputs may be used, any unused inputs should be tied to LOW.
EF0/DR0 EF1/OR1, EF2/OR2, EF2/OR3	Empty Flags 0/1/2/3 or Output Ready Flags 0/1/2/3	HSTL-LVTTL OUTPUT	These are the Empty Flag (Standard IDT mode) or Output Ready Flag (FWFT mode) outputs for the read port of Queue $0,1,2$ and 3 respectively.
ERCLK	Echo Read Clock	HSTL-LVTTL OUTPUT	This is the echo clock output for the read port. It s synchronous to the data output bus Q[35:0] and the input RCLK.
EREN	Echo Read Enable	HSTL-LVTTL OUTPUT	This is the echo read enable output for the read port. Echo Read Enable is synchronoustothe RCLKinputandis active when a read operation has occurred and a new word has been placed onto the data output bus.
$\overline{\mathrm{FF}} 0 / \overline{\mathrm{R}} 0$, $\overline{\mathrm{FF}} 1 / \overline{\mathrm{R}} 1$, FF $2 / \overline{\mathrm{R}} 2$, FF3/R3	Full Flags 0/1/2/3 or Input Ready Flags 0/1/2/3	HSTL-LVTTL OUTPUT	These are the Full Flag(Standard IDT mode) or Input Ready Flag (FWFT mode) outputs for the write port of Queue $0,1,2$ and 3 respectively.
$\begin{array}{\|l} \hline \text { FSEL } \\ {[1: 0]} \end{array}$	FlagSelect	HSTL-LVTTL INPUT	Flagselectdefault offsetpins. During Master reset, the FSEL pins are used to selectone of 4 default $\overline{\text { PAE and }} \overline{\text { PAF }}$ offsets. Both the $\overline{\text { PAE and the }} \overline{\text { PAF offsets are programmed to the same value. }}$ Values are: $00=7 ; 01=63 ; 10=127 ; 11=1023$, meaning all four Queues have the same offset.
FWFT/SI	FirstWord Fall Through/ Serial Input	HSTL-LVTTL INPUT	DuringMaster Reset, FWFT=1 selects FirstWord Fall Through mode, FWFT=0 selects IDTStandard mode. AfterMaster Resetthis pin is usedforthe Serial Datainputforthe programming of the $\overline{\text { PAE }}$ and PAFflags offsetregisters.
IOSEL	I/OSelect	CMOS INPUT	During Master Resetifthe IOSELpinis HIGH, then all inputs and outputs that are designated "LVTTL or HSTL" will be setto HSTL format. If LOW then they will be setto LVTTL format. All pins withaCMOS format will remain unchanged. CMOS formatmeans that the pinis intended to betied to Vcc orGND and these particular pins are notested for VIL or VIH.
IS[1:0]	InputSelect	HSTL-LVTTL INPUT	These inputs select one of the four Queue's to be written into on the write port. The address on the input selectpins is set-up with respect to the WCLK.
IW[1:0]	InputWidth	CMOS INPUT	This pin is used during Master Resetto select the inputword width bus size for the device. $00=x 10$; $01=x 20 ; 10=x 40$
$\overline{\text { MRS }}$	Master Reset	HSTL-LVTTL INPUT	This input provides a full device reset. All configuration pins are sampled based on a Master Reset operation.
$\overline{\mathrm{OE}}$	OutputEnable	HSTL-LVTTL INPUT	This is the Output Enable for the read port. The data outputs will be placed into High Impedance if this pin is HIGH. This input is asynchronous.
OS[1:0]	OutputSelect	HSTL-LVTTL INPUT	These inputs select one of the four Queue's to be read from on the read port. The address on the output selectpins is set-up with respectothe RCLK.
OW[1:0]	OutputWidth	$\begin{aligned} & \hline \text { CMOS } \\ & \text { INPUT } \end{aligned}$	This pin is used during Master Resetto select the outputword width bus size forthe device. $00=\mathrm{x} 10$; $01=x 20 ; 10=x 40$
$\begin{array}{\|l\|} \hline \overline{\text { PAE } 0,}, \overline{\text { PAE }} 1 \\ \overline{\text { PAE } 2}, \overline{\text { PAE }} 3 \end{array}$	Programmable AlmostEmpty Flags $0 / 1 / 2 / 3$	HSTL-LVTTL OUTPUT	These are the Programmable Almost Empty Flag outputs for the read port of Queue $0,1,2$ and 3 respectively.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
$\begin{array}{\|l} \overline{\mathrm{PAFO}}, \overline{\mathrm{PAF1}} \\ \overline{\mathrm{PAF2}}, \overline{\mathrm{PAF3}} \end{array}$	Programmable AlmostFull Flags 0/1/2/3	HSTL-LVTTL OUTPUT	These are the Programmable Almost Full Flag outputs for the write port of Queue $0,1,2$ and 3 respectively.
$\overline{\mathrm{PD}}$	Power Down	HSTL-LVTTL INPUT	This input provides considerable power saving in HSTL/eHSTL mode. If this pin is low, the input leveltranslators for all the datainputpins, clocks and non-essential control pins are turned off. When $\overline{\mathrm{PD}}$ is brought high, a power-up sequence timing will have to be met before the inputs will be read It is essential thatthe user respects these conditions when powering down the partand powering up the part, so as to not produce runt pulses or glitches on the clocks if the clocks are free running.
$\frac{\overline{\mathrm{PRS}} 0, \overline{\mathrm{PRS}} 1}{\frac{\mathrm{PRS} 2, \overline{\mathrm{PRS}} 3}{}}$	Partial Reset0/1/2/3	HSTL-LVTTL INPUT	These are the Partial Reset inputs for each internal Queue. Resets the read and write and the flag pointerstozero, sets the outputregistertozero. During Partial Reset, the existing mode (IDTorFWFT) and the programmable flag settings are all retained.
Q[39:0] ${ }^{(2)}$	DataOutputBus	LVTTL OUTPUT	These are the 40 data output pins. Datais read out of the device via these output pins on the rising edge of RCLK providedthat $\widehat{\text { REN }}$ is LOW, OE is LOW and thequeue is selected. Due to bus-matching notall outputs may be used, any unused outputs should not be connected.
RCLK	Read Clock	HSTL-LVTTL INPUT	This is the clock inputforthe read port. All read portoperations will be synchronous to this clock input.
$\overline{\mathrm{RCS}}$	Read ChipSelect	HSTL-LVTTL INPUT	This is the read chip select inputfor the read port. All read operations will occur synchronous to the RCLK clockinputprovided that $\overline{\text { ENN }}$ and $\overline{\mathrm{RCS}}$ are LOW. When $\overline{\mathrm{RCS}}$ is HIGH the outputs are inhigh impedance and reads are disabled.
RDDR	Read Port DDR	$\begin{aligned} & \hline \text { CMOS } \\ & \text { INPUT } \end{aligned}$	During master reset, this pin selects DDR or SDR format. If RDDR=1, then the RCLK reads a word on both the rising and falling edge of RCLK. If RDDR $=0$ then the RCLK reads a word only on the rising edge of RCLK.
$\overline{\mathrm{REN}}$	Read Enable	HSTL-LVTTL INPUT	This is the read enable inputfor the read port. All read operations will occur synchronoustothe RCLK clock input provided that $\overline{R E N}$ and $\overline{R C S}$ are LOW.
SCLK	Serial Clock	HSTL-LVTTL INPUT	Serial clock for programming and readingthe $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ offsetregisters. On the rising edge of each SCLK, when SWEN is low, one bit of datais shitted intothe $\overline{\text { PAE and PAF registers. Onthe rising edge }}$ The reading of the $\overline{\text { PAE }}$ and $\overline{\mathrm{AFF}}$ registers is non-destructive.
SDO	Serial Data Output	HSTL-LVTTL OUTPUT	When $\overline{\text { SREN }}$ is brought low before the rising edge of SCLK, the contents of the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{AFF}}$ registers are copied to a readback serial register. While SREN is maintained low, on each rising edge of SCLK, one bit of data is shifted out of this readback register through the SDO outputpin.
$\overline{\text { SREN }}$	Serial Read Enable	$\left\|\begin{array}{c} \text { HSTL-LVTTL } \\ \text { INPUT } \end{array}\right\|$	When $\overline{\text { SREN }}$ is brought low before the rising edge of SCLK, the contents of the $\overline{\mathrm{PAE}}$ and $\overline{\text { PAF }}$ registers are copied to a readback serial register. While SREN is maintained low, on each rising edge of SCLK, one bit of data is shifted out of this readback register through the SDO outputpin.
SWEN	Serial Write Enable	HSTL-LVTTL INPUT	On each rising edge of SCLK when $\overline{\text { SWEN }}$ is low, data from the FWFT/SI pin is serially loaded into the $\overline{\text { PAE and }} \overline{\text { PAF }}$ registers. Each bit loaded into the registers go directly to the $\overline{\text { PAE }} / \overline{\text { PAF }}$ registers and the new flags will be in operation.
TCK ${ }^{(3)}$	JTAGClock	HSTL-LVTTL INPUT	ClockinputforJTAG function. One offourterminals required by IEEE Standard 1149.1-1990. Tes operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and TDO change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(3)}$	JTAG Test Data Input	HSTL-LVTTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data is serially scanned to the TDI on the rising edge of TCK to the Instruction Register, ID Register, Bypass Register, or Boundary Scan chain. An internal pull-up resistor forces TDIHIGHifleftunconnected.
TDO ${ }^{(3)}$	JTAG TestData Output	HSTL-LVTTL OUTPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, testdatais serially loaded viathe TDO on the falling edge of TCK fromeitherthe Instruction Register, ID Register, Bypass Register and Boundary Scan chain. This outputis high-impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
TMS ${ }^{(3)}$	JTAGMode Select	HSTL-LVTTL INPUT	TMS is a serial inputpin. One of fourterminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states sampled on the rising edge of TCK. An internal pull-up resistor forces TMS HIGH ifleft unconnected.
$\overline{\mathrm{TRST}}{ }^{(3)}$	JTAGReset	HSTL-LVTTL INPUT	TRST is an asynchronous resetpinforthe JTAG controller. TheJTAG TAP controller is automatically reset upon power-up. If the TAP controller is not properly reset then the Queue outputs will always beinhigh-impedance. Ifthe JTAGfunction is used butthe userdoes notwantto use TRST, then TRST can be tied with $\overline{\mathrm{MRS}}$ to ensure proper Queue operation. If the JTAG function is not used then this signal needs to be tied to GND. An internal pull-up resistor forces TRST HIGH if left unconnected.
WCLK	WriteClock	HSTL-LVTTL INPUT	This is the clock inputfor the write port. All write port operations will be synchronous to this clock input on either the rising edge (SDR mode) or rising or falling edge (DDR mode).
$\overline{W C S}$	WriteChipSelect	HSTL-LVTTL INPUT	This is the write chip select input for the write port. All write operations will occur synchronous to the WCLK clock input provided that $\overline{W E N}$ and $\overline{W C S}$ are LOW, sampled on WCLK.
WDDR	Write PortDDR	CMOS INPUT	During master reset, this pin selects DDR orSDRformat. IfWDDR=1, then the WCLK writes a word on both the rising and falling edge. IfWDDR=0then the WCLK writes a word only on the rising edge.
$\overline{\text { WEN }}$	Write Enable	HSTL-LVTTL INPUT	This is the write enable inputfor the write port. All write operations will occur synchronous to theWCLK clock input provided that $\overline{W E N}$ and $\overline{W C S}$ are LOW, sampled on the rising edge of WCLK.
Vcc	+2.5 Supply	PWR	Power supply for the chip core, 2.5 V .
VDDQ	Output Rail Voltage	PWR	Power supply for all of the chip's outputs.2.5V for LVTTL outputs, 1.5V for HSTL outputs or 1.8 V for eHSTLoutputs.
GND	Ground Pin	GND	Ground connection.
Vref	Reference voltage	Analog	Voltage Reference inputfor HSTL inputs.

NOTES:

1. All CMOS pins should remain unchanged. CMOS format means that the pin is intended to be tied directly to VCC or GND and these particular pins are not tested for VIH or VIL.
2. All unused outputs should be leftun-connected
3. These pins are for the JTAG port. Please referto pages 28-31, Figure 4-6 for JTAG information.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'l	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to $+3.6^{(2)}$	V
TSTG	StorageTemperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Compliant with JEDEC JESD8-5. VCC terminal only.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2,3)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	$10^{(3)}$	pF
CouT $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{VIH})$.
2. Characterized values, not currently tested.
3. CIN for Vref is 20 pF .

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage with reference to GND	2.375	2.5	2.625	V
VDDQ	$\begin{array}{ll}\text { Output Supply Voltage } & \text { —LVTTL } \\ & \text { - eHSTL } \\ & - \text { HSTL }^{(2)}\end{array}$	$\begin{gathered} 2.375 \\ 1.7 \\ 1.4 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.8 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 2.625 \\ 1.9 \\ 1.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Vref	Voltage Referencelnput $\begin{aligned} & \text { - } \mathrm{eHSTL} \\ &-\mathrm{HSTL}{ }^{(2)}\end{aligned}$	$\begin{gathered} 0.8 \\ 0.68 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.75 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
VIH	$\begin{aligned} \text { InputHigh Voltage } & \\ & - \text { LVTTL } \\ & -\mathrm{eHSTL} \\ & -\mathrm{HSTL}^{(2)}\end{aligned}$	1.7 Vreft0.1 Vreft0.1	-	3.45 VdDQ+0.3 VdDQ+0.3	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
VIL	$\begin{array}{ll} \hline \text { InputLow Voltage } & - \text { LVTTL } \\ & -\mathrm{eHSTL} \\ & -\mathrm{HSTL}^{(2)} \end{array}$	$\begin{gathered} -0.3 \\ -0.3 \end{gathered}$	-	0.7 Vref-0. 1 Vref-0.1	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
TA	OperatingTemperatureCommercial	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTES:

1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.
2. Compliant with JEDEC JESD8-6.
3. $\mathrm{GND}=$ Ground.

DC ELECTRICAL CHARACTERISTICS

(Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Min.	Max.	Unit
lıI	InputLeakageCurrent		-10	+10	$\mu \mathrm{A}$
ILO	OutputLeakage Current		-10	+10	$\mu \mathrm{A}$
VoH ${ }^{(7)}$	OutputLogic "1"Voltage,	$\begin{aligned} & \text { IOH }=-8 \mathrm{~mA} @ \text { LVTTL } \\ & \text { IOH }=-8 \mathrm{~mA} @ \text { eHSTL } \\ & \text { IOH }=-8 \mathrm{~mA} @ \mathrm{HSTL} \end{aligned}$	VDDQ-0.4 VDDQ-0.4 VDDQ-0.4	$-$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VoL	Output Logic "0" Voltage,	$\begin{aligned} & \text { IOL }=8 \mathrm{~mA} \text { @LVTTL } \\ & \text { IOL }=8 \mathrm{~mA} \text { @eHSTL } \\ & \text { IOL }=8 \mathrm{~mA} \text { @HSTL } \end{aligned}$	-	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
ICC1 ${ }^{(1,2,3)}$	Active Vcc Current (See Note 8fortest conditions)	--LVTTL -- eHSTL -- HSTL	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 144 \\ & 234 \\ & 231 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Icc3 ${ }^{(1,2,3)}$	Standby VccCurrent (See Note 9fortest conditions)	--LVTTL -- eHSTL -- HSTL	-	$\begin{gathered} 82 \\ 163 \\ 159 \end{gathered}$	mA mA mA
$\operatorname{IcC5} 5^{(1,2,3)}$	Power Down Vcc Current (See Note 10fortestconditions)	$\begin{aligned} & \text {--LVTTL } \\ & \text {-- eHSTL } \\ & \text {-- HSTL } \end{aligned}$	-	$\begin{array}{r} 8 \\ 25 \\ 24 \end{array}$	mA mA mA

NOTES:

1. Both WCLK and RCLK toggling at 20 MHz .
2. Data inputs toggling at 10 MHz
3. Typical ICC1 calculation: for LVTTL I/O ICC1 $(\mathrm{mA})=6 \mathrm{xfs}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz) for HSTL or eHSTL I/O ICC1 (mA) = 90+ (6xfs), fs = WCLK frequency = RCLK frequency (in MHz)
4. Typical IDDQ calculation: With Data Outputs in High-Impedance: $\operatorname{IDDQ}(\mathrm{mA})=0.25 \mathrm{xfs}, \mathrm{fs}=$ WCLK $=$ RCLK frequency (in MHz) With Data Outputs in Low-Impedance: IDDQ (mA) = (CL x VDDQ x fs x N) /2000
fs $=$ WCLK frequency $=$ RCLK frequency (in MHz), VDDQ $=2.5 \mathrm{~V}$ for LVTTL; 1.5 V for HSTL; 1.8 V for eHSTL
$\mathrm{tA}=25^{\circ} \mathrm{C}, \mathrm{CL}=$ capacitive load (pf), $\mathrm{N}=$ Number of bits switching
5. Total Power consumed: $\mathrm{PT}=[(\mathrm{VCC} \times I C C)+(V D D Q \times I D D Q)]$. $\mathrm{IOH}=-8 \mathrm{~mA}$ for all voltage levels.
6. $\mathrm{IOH} \geq 8 \mathrm{~mA}$, $\mathrm{IOL} \geq-8 \mathrm{~mA}$.
7. Outputs are not 3.3 V tolerant.
8. $\mathrm{VCC}=2.5 \mathrm{~V}, \mathrm{WCLK}=\mathrm{RCLK}=20 \mathrm{MHz}, \overline{\mathrm{WEN}}=\overline{\mathrm{REN}}=\mathrm{LOW}, \overline{\mathrm{WCS}}=\overline{\mathrm{RCS}}=\mathrm{LOW}, \overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{PD}}=\mathrm{HIGH}$.
9. $V C C=2.5 V, W C L K=R C L K=20 M H z, \overline{W E N}=\overline{R E N}=H I G H, \overline{W C S}=\overline{R C S}=H I G H, \overline{O E}=L O W, \overline{P D}=H I G H$.
10. VCC $=2.5 \mathrm{~V}, \mathrm{WCLK}=$ RCLK $=20 \mathrm{MHz}, \overline{\mathrm{WEN}}=\overline{\mathrm{REN}}=\mathrm{HIGH}, \overline{\mathrm{WCS}}=\overline{\mathrm{RCS}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{PD}}=\mathrm{LOW}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC compliant)

Symbol	Parameter	Commercial \& Industrial IDT72T51248L5 IDT72T51258L5 IDT72T51268L5		Commercial \& IndustrialIDT72T51248L6-7IDT72T51258L6-7IDT72T51268L6-7		Unit
		Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency (WCLK \& RCLK)	-	200	-	150	MHz
tA	Data Access Time	0.6	3.6	0.6	3.8	ns
tclk	Clock Cycle Time	5	-	6.7	-	ns
tCLKH	Clock High Time	2.3	-	2.8	-	ns
tCLKL	Clock Low Time	2.3	-	2.8	,	ns
DS	DataSetupTime	1.5	-	2.0	-	ns
DH	Data Hold Time	0.5	-	0.5	-	ns
tens	EnableSetup Time	1.5	-	2.0	-	ns
ENNH	Enable Hold Time	0.5	-	0.5	-	ns
fc	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
taso	Serial OutputDataAccess Time	-	20	-	20	ns
tsclk	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	45	-	ns
tSDS	Serial Data InSetup	15	-	- 15	-	ns
tsDH	Serial Data In Hold	5	-	5	-	ns
tSENS	Serial Enable Setup	5	-	5	-	ns
tSENH	Serial Enable Hold	5	-	- 5	-	ns
tRS	ResetPulseWidth	200	-	- 200	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tRSF	Resetto Flag and Output Time	-	12	-	15	ns
tolz ($\overline{\mathrm{E}} \cdot \mathrm{Qn})^{(2)}$	OutputEnable to Outputin Low-Impedance	0.6	3.6	0.8	3.8	ns
tohz ${ }^{(2)}$	OutputEnableto OutputinHigh-Impedance	0.6	3.6	0.8	3.8	ns
toe	OutputEnable to Data Output Valid	0.6	3.6	0.8	3.8	ns
twFF	Write Clock to $\overline{\mathrm{FF}}$ or $\overline{\mathrm{R}}$	-	- 3.6	-	3.8	ns
tREF	Read Clock to $\overline{\mathrm{EF}}$ or $\overline{\mathrm{OR}}$		- 3.6	-	3.8	ns
tCEF	Read Clock to Composite $\overline{\mathrm{EF}}$ or $\overline{\mathrm{OR}}$		3.6	-	3.8	ns
tCFF	Write Clock to Composite $\overline{\text { FF }}$ or $\overline{\mathrm{R}}$	-	3.6	-	3.8	ns
tPAFS	Write Clockto Synchronous Programmable Almost-Full Flag	-	3.6	-	3.8	ns
tPAES	Read Clock to Synchronous Programmable Almost-Empty Flag	-	3.6	-	3.8	ns
tPAFA	Write Clock to Asynchronous Programmable Almost-Full Flag	-	10	-	12	ns
tPAEA	Read Clock to Asynchronous Programmable Almost-Empty Flag	-	10	-	12	ns
terclik	RCLK to Echo RCLK Output	-	4.0	-	4.3	ns
tCLKEN	RCLK to Echo $\overline{\text { REN }}$ Output	-	3.6	-	3.8	ns
D	Time Between Data Switching and ERCLK edge	0.4	-	0.5	-	ns
tRCSLZ	RCLK to Active from High-Impedance	-	3.6	-	3.8	ns
tRCSHZ	RCLK to High-Impedance	-	3.6	-	3.8	ns
tSkEW1	SKEW time between RCLK and WCLK for $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$	4	-	5	-	ns
tSkEW2	SKEW time between RCLK and WCLK for $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ in DDR mode	5	-	7	-	ns
tSkEW3	SKEW time between RCLK and WCLK for $\overline{\overline{\text { PAE }} \text { and }} \overline{\overline{\text { PAF }}}$	5	-	7	-	ns

NOTES:

1. This applies to both DDR and SDR modes of operation.
2. Values guaranteed by design, not currently tested.

HSTL

1.5V AC TEST CONDITIONS

InputPulse Levels	0.25 to 1.25 V
InputRise/FallTimes	0.4 ns
InputTiming Reference Levels	0.75
OutputReferenceLevels	$\mathrm{VdDO} / 2$

NOTE:

1. $V_{D D Q}=1.5 \mathrm{~V}$.

EXTENDED HSTL

1.8V AC TEST CONDITIONS

Input Pulse Levels	0.4 to 1.4 V
Input Rise/FallTimes	0.4 ns
Input Timing ReferenceLevels	0.9
Output ReferenceLevels	VDDo/2

NOTE:

1. $\mathrm{VDDQ}=1.8 \mathrm{~V}$.

Figure 2b. Lumped Capacitive Load, Typical Derating

AC TEST LOADS

Figure 2a. AC Test Load

LVTTL

2.5V AC TEST CONDITIONS

Input Pulse Levels	GND to 2.5 V
InputRise/FallTimes	1ns
Input Timing ReferenceLevels	Vcc/2
OutputReferenceLevels	Vodo/2

NOTE:

1. For $\operatorname{LVTTL}, \mathrm{V} C C=\mathrm{VDDQ}=2.5 \mathrm{~V}$.

OUTPUT ENABLE \& DISABLE TIMING

NOTES:

1. $\overline{R E N}$ is HIGH.
2. $\overline{\text { RCS }}$ is LOW.

READ CHIP SELECT ENABLE \& DISABLE TIMING

FUNCTIONAL DESCRIPTION

MASTER RESET \& DEVICE CONFIGURATION - $\overline{\text { MRS }}$

During Master Resetthe device configuration and settings are determined, this includes the following:

1. IDT Standard or First Word Fall Through (FWFT) flag timing mode
2. Single or Double Data Rates on both the Write and Read ports
3. Programmable flag mode, synchronous or asynchronoustiming
4. Write and Read Port Bus Widths, $\times 40, \times 20$, or $\times 10$
5. Default Offsets for the programmable flags, $7,63,127$, or 1023
6. LVTTL or HSTL I/O selection
7. Defaultstarting Queue

The state of the configuration inputs during master reset will determine which of the above modes are selected. A master resetcomprises of pulsing the $\overline{\mathrm{MRS}}$ input pin from highto low for a period of time (tRS) with the configuration inputs held in their respective states. Table 1 summarizes the configuration modes available during master reset. They are described as follows:

IDT Standard or FWFT Mode. The two available flag timing modes are selected using the FWFT/Sl input. If FWFT/SI is LOW during master reset then IDT Standard mode is selected, if it is high then FWFT mode is selected. The timing modes are described later in Timing Modes: IDTStandardvs FirstWord Fall Through (FWFT) Mode section.

TABLE 1 - DEVICE CONFIGURATION

PINS	VALUES	CONFIGURATION
FWFT/SI	0	IDTStandard
	1	FWFT
WDDR	0	Single Data Rate write port
	1	Double Data Rate write port
RDDR	0	Single Data Rate read port
	1	DoubleData Rate read port
IW[1:0]	00	Write port is 10 bits wide
	01	Write port is 20 bits wide
	10	Write port is 40 bits wide
	11	Restricted
OW[1:0]	00	Read port is 10 bits wide
	01	Read port is 20 bits wide
	10	Read port is 40 bits wide
	11	Restricted
FSEL[1:0]	00	Programmable flag offset registers value $=7$
	01	Programmable flag offset registers value $=63$
	10	Programmableflagoffset registers value $=127$
	11	Programmable flagoffset registers value $=1023$
IOSEL	0	All applicable I/Os (except CMOS) are LVTTL
	1	All applicable I/Os (except CMOS) are HSTL/eHSTL
IS[1:0]	00	Queue0
	01	Queue1
	10	Queue2
	11	Queue3
OS[1:0]	00	Queue0
	01	Queue1
	10	Queue2
	11	Queue3

Single Data Rate (SDR) or Double Data Rate (DDR). The input/output data rates are portselectable. This is a versatile feature that allows the userto select either SDR or DDR on the write ports and/or reads ports of all Queues using the WDDR and/or RDDR inputs. If WDDR is LOW during master reset thenthe write ports of all Queues will function in SDR mode, ifitis highthen the write ports will beDDR mode. IfRDDRisLOW duringmaster resetthenthe read ports of all Queues will function in SDR mode, ifitis high thenthe read port will be DDR mode. This feature is described in the Signal Descriptions section.
Programmable Almost Empty/Full Flags. The almostempty and almost full offsets are userprogrammable, with offsetvalues listed in Table2. Both $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ are double-buffered and updated based on the rising edge of their respective clocks. $\overline{\mathrm{PAE}}$ with respectto RCLK and $\overline{\mathrm{PAF}}$ with respect to WCLK.
Selectable Bus Width. The bus width can be selected on independently the read and write ports using the IW and OW inputs. IW pins set the write port width to $\times 40, \times 20$ or $\times 10$ bits wide. The OW pins set the read port to $\mathrm{x} 40, \mathrm{x} 20$ or x10 bits wide.
Programmable Flag Offset Values. These offset values can be user programmed or they can be set to one of four default values during a master reset. Fordefaultprogramming, the state of the FSEL[1:0] inputs during master reset will determine the value. Table2, Default Programmable offsets lists the four offsetvalues and how to selectthem. For programming the offset values to a specific number, use the serial programming signals (SCLK, $\overline{\text { SWEN }}$, $\overline{\text { SREN }}$, FWFT/SI) to load the value into the offset register. You may also use the JTAG port on this device to load the offset value. Keep in mind that you must disable the serial programming signals ifyou planto use the JTAG port for loading the offset values. To disable the serial programming signals, tie SCLK, SWEN, $\overline{\text { SREN }}$, and FWFT/SI to Vcc. A thorough explanation of the serial and JTAG programming ofthe flag offsetvalues is provided inthenextsectiontitled "Serial Write and Reading of Offset Registers".

I/O Level Selection. The I/Os can be selected for either2.5V LVTTLlevels or 1.5V HSTL/1.8V eHSTL levels. The state of the IOSEL input will determine which I/O level will be selected. If IOSEL is HIGH then the applicable I/Os will be 1.5V HSTL or 1.8 V eHSTL, depending on the voltage level applied to VDDQ and Vref. For HSTL, VddQ $=1.5 \mathrm{~V}$ and Vref $=1 / 2 \mathrm{~V}$ DdQ. For eHSTL VddQ $=1.8 \mathrm{~V}$ and $\mathrm{VREF}=1 / 2 \mathrm{~V}$ VDQ. If IOSEL is LOW then the applicable I/Os will be 2.5V LVTTL. As noted in the Pin Description section, IOSEL is a CMOS input and must be tied to either Vcc or GND for proper operation.
Input and Output Selection. During master reset, the value of IS[1:0] and OS[1:0] will be held constant and indicates which internal Queue the read and write port will select for initial operation. Data will be written to or read from this internal Queue on the firstvalid write and read operation aftermaster reset.

TABLE 2 - DEFAULT PROGRAMMABLE FLAG OFFSETS

IDT72T51248 / IDT72T51258 / IDT72T51268		
FSEL1	FSEL0	Offsets n,m
0	0	7
0	1	63
1	0	127
1	1	1023

NOTES:

1. In default programming, the offset value selected applies to all internal Queues.
2. To program different offset values for each Queue, serial programming must be used.

TDI*	TCK*	SWEN	$\overline{\text { SREN }}$	SCLK	IDT72T51248 IDT72T51258 IDT72T51268		
					IW/OW = x40	IW/OW = x20	IW/OW = x10
0008		0	1	5	Serial write into register: 104 bits for the IDT72T51248 112 bits for the IDT72T51258 120 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)	Serial write into register: 112 bits for the IDT72T51248 120 bits for the IDT72T51258 128 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)	Serial write into register: 120 bits for the IDT72T51248 128 bits for the IDT72T51258 136 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)
0007	F	1	0	5	Serial read from registers: 104 bits for the IDT72T51248 112 bits for the IDT72T51258 120 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)	Serial read from registers: 112 bits for the IDT72T51248 120 bits for the IDT72T51258 128 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)	Serial read from registers: 120 bits for the IDT72T51248 128 bits for the IDT72T51258 136 bits for the IDT72T51268 1 bit for each rising SCLK edge starting with empty offset (LSB) ending with full offset (MSB)
Don't care except 0008 \& 0007	X	1	1	X	No Operation	No Operation	No Operation

NOTES:

* Programming done using the JTAG port.

1. The programming methods apply to both IDT Standard mode and FWFT mode.
2. Parallel programming is not featured in this device.
3. The number of bits includes programming to all four dedicated $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset registers.

Figure 3. Programmable Flag Offset Programming Methods

Serial Bits	IDT72T51248 IW/OW = x40	IDT72T51248 IW/OW = x20 or IDT72T51258 IW/OW = x40	IDT72T51248 IW/OW = x20 or IDT72T51258 IW/OW = x20 or IDT72T51268 IW/OW = x40	IDT72T51258 IW/OW = x10 or IDT72T51268 IW/OW = x20	IDT72T51268 IW/OW = x10	Offset Register
	1-13	1-14	1-15	1-16	1-17	$\overline{\text { PAE }} 3$
	14-26	15-28	16-30	17-32	18-34	PAF3
	27-39	29-42	31-45	33-48	35-51	PAE2
	40-52	43-56	46-60	49-64	52-68	$\overline{\text { PAF2 }}$
	53-65	57-70	61-75	65-80	69-85	PAE1
	66-78	71-84	76-90	81-96	86-102	$\overline{\text { PAF1 }}$
	79-91	85-98	91-105	97-112	103-119	$\overline{\text { PAE0 }}$
	92-104	99-112	106-120	113-128	120-136	$\overline{\text { PAF0 }}$

Figure 4. Offset Registers Serial Bit Sequence

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE
TheIDT72T51248/72T51258/72T51268supporttwo differenttimingmodes of operation: IDT Standard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during master reset, by the state of the FWFT input.

During master reset, if the FWFT pin is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{FF}})$ to indicate whether or not there are any words present in the Queue. It also uses the Full Flag ($\overline{\mathrm{FF}}$) to indicate whether or not the Queue has any free space for writing. In IDT Standard mode, every word read from the Queue, including the first, must be requested using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

If the FWFT pin is HIGH during master reset, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}}$) to indicate whether or not there is valid data atthe data outputs. Italso uses Input Ready ($\overline{\mathrm{R}})$ to indicate whether or not the Queue has any free space for writing. In the FWFT mode, the first word written to an empty Queue goes directly to outputbus afterthree RCLK rising edges, applying $\overline{R C S}=$ LOW is not necessary. However, subsequent words must be accessed using the $\overline{R C S}$ and RCLK. Various signals, in both inputs and outputs operate differently depending on which timing mode is in effect. The timing mode selected affects all internal Queues equally.

IDT STANDARD MODE

In this mode, the status flags $\overline{F F}, \overline{P A F}, \overline{P A E}$, and $\overline{\mathrm{EF}}$ operate in the manner outlined inTable3. To write data intothe Queue, Write Enable ($\overline{\mathrm{WEN}})$ and write
chip select $\overline{W C S}$ must be LOW. Data presented to the $\mathrm{D}[39: 0]$ lines will be clocked into the Queue on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag ($\overline{\mathrm{EF}}$) will go HIGH after three clock cycles. Subsequent writes will continue to fill up the Queue. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH aftern +1 words have been loaded into the Queue, where n is the empty offset value. The default setting for these values are listed in Table 3. This parameter is also user programmable as described inthe serial writing and reading of offset registers section.
Continuing to write data into the Queue without performing read operations will cause the Programmable Almost-Full flag $(\overline{\mathrm{PAF}})$ to go LOW. Again, if no reads are performed, the $\overline{\mathrm{PAF}}$ will go LOW after $(8,192-\mathrm{m})$ writes for the IDT72T51248, ($16,384-m$) writes for the IDT72T51258, and ($32,768-\mathrm{m}$) writes for the IDT72T51268. This is assuming the I/O bus width is configured to $\times 40$. If the I/O is $x 20$, then $\overline{\text { PAF }}$ will go LOW after $(16,384-\mathrm{m})$ writes for the IDT72T51248, (32,768-m) writes for the IDT72T51258, and (65,536-m) writes for the IDT72T51268. If the I/O is $x 10$, then $\overline{\text { PAF }}$ will go LOW after ($32,768-\mathrm{m}$) writes for the IDT72T51248, $(65,536-m)$ writes for the IDT72T51258, and (131,072-m) writes forthe IDT72T51268. The offset "m" is the full offset value. The defaultsetting for these values are listed in Table 3. This parameter is also user programmable. See the section on serial writing and reading of offset registers for details.
Whenthe Queue is full, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. If no reads are performed aftera reset, $\overline{F F}$ will goLOW afterD writes to the Queue. If the I/O bus width is configured to $x 40$, then $D=8,192$ writes

TABLE 3 - STATUS FLAGS FOR IDT STANDARD MODE

OW = x 40	IDT72T51248	IDT72T51258	IDT72T51268						
$\mathrm{OW}=\mathrm{x} 20$		IDT72T51248	IDT72T51258	IDT72T51268	\square				
$\mathrm{OW}=\times 10$			IDT72T51248	IDT72T51258	IDT72T51268	$\overline{F F}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{E F}$
Number of Words in Queue	0	0	0	0	0	H	H	L	L
	1 to $\mathrm{n}^{(1)}$	H	H	L	H				
	$(\mathrm{n}+1)$ to $(8,192-\mathrm{m})$	$(\mathrm{n}+1)$ to $(16,384-m)$	$(\mathrm{n}+1)$ to $(32,768-\mathrm{m})$	$(\mathrm{n}+1)$ to $(65,536-m)$	$(\mathrm{n}+1)$ to (131,072-m)	H	L	H	H
	8,192	16,384	32,768	65,536	131,072	L	L	H	H

NOTE:

1. $n, m=7$ if $\operatorname{FSEL}[1: 0]=00, n, m=63$ if FSEL[$1: 0]=01, n, m=127$ if FSEL[1:0] $=10, n, m=1023$ if FSEL[$1: 0]=11$.

TABLE 4 - STATUS FLAGS FOR FWFT MODE

NOTE:
6159 drw09

1. $n, m=7$ if FSEL[1:0] $=00, n, m=63$ if FSEL[1:0] $=01, n, m=127$ if FSEL[1:0] $=10, n, m=1023$ if FSEL[1:0] $=11$.
forthe IDT72T51248, 16,384 writes forthe IDT72T51258, and 32,768 writes for the IDT72T51268. If the I/O is $\times 20$, then $D=16,384$ writes for the IDT72T51248, 32,768 writes forthe IDT72T51258, and 65,536 writes for the IDT72T51268. If the $/ /$ is $x 10$, then $D=32,768$ writes for the IDT72T51248, 65,536 writes for the IDT72T51258, and 131,072 writes for the IDT72T51268.
If the Queue is full, the first read operation will cause $\overline{\mathrm{FF}}$ to go HIGH after two clock cycles. Subsequent read operations will cause $\overline{\text { PAF to go HIGH at }}$ the conditions described in Table 3. If further read operations occur, without write operations, $\overline{\text { PAE will go LOW when there are n words inthe Queue, where }}$ nis the empty offset value. Continuing read operations will cause the Queue to become empty. When the lastword has been read from the Queue, the $\overline{E F}$ will go LOW inhibiting further read operations. REN is ignored when the Queue is empty.

When configured in IDT Standard mode, the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ outputs are double register-buffered outputs. IDTStandard mode is available when the device is configured in both Single Data Rate and Double Data Rate mode. Relevant timing diagrams for IDTStandard mode can be found in Figure 12, Write Cycle and Full Flag Timing (IDT Standard mode).

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the statusflags $\overline{\mathrm{OR}}, \overline{\mathrm{IR}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$ operate in the manner outlined in Table 4. To write data into to the Queue, $\overline{W C S}$ mustbe LOW. Data presented to the $\mathrm{D}[39: 0]$ lines will be clocked into the Queue on subsequent transitions of WCLK. Afterthe first write is performed, the Output Ready ($\overline{\mathrm{OR}}$) flag will go LOW. Subsequent writes will continue to fill upthe Queue. PAE will go HIGH after $n+2$ words have been loaded into the Queue, where n is the empty offset value. The default setting for these values are listed in Table 4. This parameter is also user programmable as described in the serial writing and reading of offsetregisters section.

Continuing to write data into the Queue without performing read operations will cause the Programmable AImost-Full flag ($\overline{\mathrm{PAF}}$) to go LOW. Again, if no reads are performed, the $\overline{\text { PAF }}$ will go LOW after $(8,193-\mathrm{m})$ writes for the IDT72T51248, ($16,385-\mathrm{m}$) writes for the IDT72T51258, and ($32,769-\mathrm{m}$) writes for the IDT72T51268. This is assuming the I/O bus width is configured to 440 . If the I/O is x20, then PAF will go LOW after ($16,385-\mathrm{m}$) writes for the IDT72T51248, ($32,769-\mathrm{m}$) writes for the IDT72T51258, and ($65,537-\mathrm{m}$) writes for the IDT72T51268. If the I/O is $\times 10$, then $\overline{\text { PAF }}$ will go LOW after $(32,769-\mathrm{m})$ writes for the IDT72T51248, ($65,537-\mathrm{m}$) writes for the

IDT72T51258, and ($131,073-m$) writes for the IDT72T51268. The offset " m " is the full offsetvalue. The defaultsetting for these values are listed in Table 4. This parameter is also user programmable. See the section on serial writing and reading of offset registers fordetails.
When the Queue is full, the Input Ready ($\overline{\mathbb{R}})$ will go LOW, inhibiting further write operations. If no reads are performed after a reset, $\overline{\mathrm{R}}$ will go LOW after D writes to the Queue. If the I/O bus width is configured to $\times 40$, then $\mathrm{D}=8,193$ writes for the IDT72T51248, 16,385 writes for the IDT72T51258, and 32,769 writes for the IDT72T51268. If the I/O is $x 20$, then $\mathrm{D}=16,385$ writes for the IDT72T51248, 32,769 writes for the IDT72T51258, and 65,537 writes for the IDT72T51268. If the I/O is $\times 10$, then $\mathrm{D}=32,769$ writes for the IDT72T51248, 65,537 writes for the IDT72T51258, and 131,073 writes for the IDT72T51268.
If the Queue is full, the firstread operation will cause $\overline{\mathrm{R}}$ to go HIGH aftertwo clock cycles. Subsequent read operations will cause $\overline{\text { PAF }}$ to go HIGH at the conditions described in Table 4. Iffurther read operations occur, without write operations, $\overline{\text { PAE }}$ will go LOW when there are n words in the Queue, where nis the empty offsetvalue. Continuing read operations will cause the Queue to become empty. Then the last word has been read from the Queue, the $\overline{\mathrm{OR}}$ will go HIGH inhibitingfurtherread operations. $\overline{\mathrm{RCS}}$ is ignored whenthe Queue is empty.
When configuredin FWFT mode, the $\overline{\text { OR }}$ flagoutputistriple register-buffered and the $\overline{\mathrm{R}} \mathrm{fl}$ lagoutputis double register-buffered. Relevantiming diagrams for FWFT mode can be found in Figure 16, Write Timing in FWFT mode.

HSTL/LVTTL I/O

The inputs and outputs of this device can be configured for either LVTTL or HSTL/eHSTL operation. Ifthe IOSELpinis HIGH during master reset, then all applicable LVTTL or HSTL signals will be configured for HSTL/eHSTL operating voltage levels. To select between HSTL or eHSTL VREF must be driven to $1 / 2$ VREF. Typically a logic HIGH in HSTL would be VREF +300 mV andalogic LOW would be VREF-300mV. Ifthe IOSEL Linis LOWduring master reset, then all applicable LVTTL or HSTLsignals will be configuredforLVTTL operating voltage levels. Inthis configuration VREF mustbe settothe static core voltage of 2.5 V . Table 5 illustrates which pins are and are notassociated with this feature. Note thatall "Static Pins" mustbetied to Vcc or GND. These pins are CMOS only and are purely device configuration pins. Note the IOSEL pin should betied HIGH or LOW and cannot toggle before and after master reset.

TABLE 5 - I/O VOLTAGE LEVEL CONFIGURATION

LVTTL/HSTLeHSTL					STATIC CMOS SIGNALS
Write Port	Read Port	JAG	Control Pins	Serial Port	Static Pins
D[39:0]	CEFFOR	TCK	FSEL[1:0]	SCLK	IOSEL
WCLK	EFF0/12/3	TRST	\|S[1:0]	SREN	Iw[1:0]
WEN	OR01/1/3	TMS	os[1:0]	SWEN	OW[1:0]
FFor $1 / 1 / 3$	ERCLK	TDI		FWFT/SI	RDDR
WCS	$\overline{\mathrm{OE}}$	TDO	$\overline{\text { MRS }}$	SDO	WDDR
CFF/CIR	PAEO/1/2/3				
PAFO/1/2/3	Q[39:0]		FWFT/SI		
$\frac{\text { RCLK }}{\text { RCS }}$					
$\frac{\mathrm{RCS}}{\mathrm{REN}}$					
EREN					

BUS MATCHING

The write and read port has bus-matching capability such that the input and output bus can be either 10 bits, 20 bits or 40 bits wide. The bus width of both the input and output port is determined during master reset using the input and output width setup pins (IW[1:0], OW[1:0]). The selected port width is applied to all four Queue ports, such that all four Queues will be configured for either $\mathrm{x} 10, \mathrm{x} 20$ or x40 bus widths. When writing or reading data from a Queue the number of memory locations available to be written or read will depend on the bus width selected and the density of the device.

Ifthe write/read port is 10 bits wide, this provides the user with a Queue depth of $32,768 \times 10$ for the IDT72T51248, $65,536 \times 10$ for the IDT72T51258, or $131,072 \times 10$ for the IDT72T51268. If the write/read port is 20 bits wide, this provides the user with a Queue depth of $16,384 \times 20$ for the IDT72T51248, $32,768 \times 20$ for the IDT72T51258, or $65,536 \times 20$ for the IDT72T51268. If
the write/read port is 40 bits wide, this provides the user with a Queue depth of $8,192 \times 40$ for the IDT72T51248, 16,384 $\times 40$ for the IDT72T51258, or $32,768 \times 40$ for the IDT72T51268. The Queue depths will always have afixed density of 327,680 bits forthe IDT72T51248,655,360 bits forthe IDT72T51258 and $1,310,072$ bits for the IDT72T51268 regardless of bus-width configuration on the write/read port.
When the device is operating in double data rate, the word is twice as large as in single data rate since one word consists of both the rising and falling edge of clock. Therefore in DDR, the Queue depths will behalf of whatitis mentioned above. For instance, if the write/read port is 10 bits wide, the depth of each Queue is $16,384 \times 10$ fortheIDT72T51248, $32,768 \times 10$ forthe IDT72T51258, or $65,536 \times 10$ for the IDT72T51268.

See Figure 5, Bus-Matching Byte Arrangementfor more information.

BYTE ORDER ON INPUT PORT:

IS1	IS0	IW1	IW0
L	L	H	L

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
L	L	L	L

D9-D0

1st: Write to Queues

1st: Read from Queues

B 2nd: Read from Queues

4th: Read from Queues

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
L	L	L	H

1st: Read from Queues

C
2nd: Read from Queues
x40 INPUT to x20 OUTPUT for Queue0

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
L	L	H	L

1st: Read from Queues
x40 INPUT to x40 OUTPUT for Queue0

NOTES:
= Outputs are High-Impedanced.
$=$ Inputs set to GND.
Figure 5. Bus-Matching Byte Arrangement

BYTE ORDER ON INPUT PORT:

IS1	IS0	IW1	IW0
L	H	L	H

1st: Write to Queues

C 2nd: Write to Queues

OS1	OS0	OW1	OW0
L	H	L	L

 1st: Read from Queues

C
3rd: Read from Queues

4th: Read from Queues
x20 INPUT to x10 OUTPUT for Queue1

OS1	OS0	OW1	OW0
L	H	L	H

1st: Read from Queues

C
2nd: Read from Queues
x20 INPUT to x20 OUTPUT for Queue1

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
L	H	H	L

Q9-Q0
A 1st: Read from Queues
x20 INPUT to x40 OUTPUT for Queue1

NOTES:
$=$ Outputs are High-Impedanced.
$=$ Inputs set to GND.
Figure 5. Bus-Matching Byte Arrangement (Continued)

BYTE ORDER ON INPUT PORT:

IS1	IS0	IW1	IW0
H	L	L	L

1st: Write to Queues

2nd: Write to Queues

3rd: Write to Queues

4th: Write to Queues

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
H	L	L	L

Q9-Q0
A
1st: Read from Queues

2nd: Read from Queues

3rd: Read from Queues

4th: Read from Queues
x10 INPUT to x10 OUTPUT for Queue2

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
H	L	L	H

Q9-Q0
A
 x10 INPUT to x20 OUTPUT for Queue2

BYTE ORDER ON OUTPUT PORT:

OS1	OS0	OW1	OW0
H	L	H	L

2nd: Read from Queues
1st: Read from Queues

1st: Read from Queues

NOTES:

$=$ Outputs are in High-Impedanced.
$=$ Inputs are set to GND.

Figure 5. Bus-Matching Byte Arrangement (Continued)

WRITE PORTOPERATION

The input select pins (IS[1:0]) determine which one of the four Queues the inputbus will write data into. The inputselectpins are sampled onthe rising edge of every WCLK, and may change on every clock edge. There is no delay switching from one Queue to another. Note, there is a two-stage pipe-line on both the read and write data paths causing a two-cycle latency on each operation. Datacanbe written on each clock regardless of the queue selected. A write operation will not be physically written into the queue until the second clock. Provided data is written every clock, following the firsttwo-cycle latency, data will reach the respective queue on every clock as well. Data will be written on the rising (and falling in DDR) edge of write clock provided $\overline{W E N}$ and $\overline{W C S}$ are active onthe rising edge of the writeclock. Note in double data rate the setup and hold times of the write enables and write chip selects are sampled with respect to the rising edge of its respective write clock only. The falling edge of WCLK does not sample the write enable and write chip select. When selecting a Queue for write operations the next word can be written to that Queue immediately on the next clock edge after the new Queue is selected. For example, ifIS[1:0] is setto 01 (Queue1) onWCLK edge 0, then onWCLK edge 1 (next read clock edge) data can be written to Queue1 if $\overline{W E N}$ and WCS are enabled.

InFWFT mode the first word written to a selected Queue will automatically be placed ontothe outputbus regardless of the state ofthe corresponding $\overline{\operatorname{REN}}$, provided thatthe selected Queue was empty and its corresponding outputready flag was inactive. The data will take four clocks to reach the out-puttaking into account the two-cycle write and two-cycle read pipeline. This occurs due to the nature of the FWFT flagtiming. Subsequentwrites tothe Queuethatis notempty will not fall through to the outputbus providing RCS is LOW and RCLK toggles. In IDT Standard mode, every word, including the first word, mustbe accessed by the read enable and read chip select.

READPORTOPERATION

The outputselectpins (OS[1:0]) determine which one of the four Queues the outputbus will read data from. The output selectpins are sampled onthe rising edge of every RCLK, and may change on every clock edge. Note, there is a two-stage pipe-line on both the read and write data paths causing atwo-cycle latency on each operation. Data can be read on each clock regardless of the queue selected. A read operation will not be physically presented to the data pins until the second clock. Provided data is read every clock, following the first two-cycle latency, data will reach the data bus on every clock as well. Data will be read on the rising (and falling in DDR) edge of read clock provided read enable and read chip selectare active(LOW). When selecting a Queue for read operations the new word read from that Queue will be available immediately on the next clock edge after the new Queue is selected. For example, if OS[1:0] is set to 01 (Queue1) on RCLK edge 0, then on RCLK edge 1 (next read clock edge) data can be read from Queue1 if $\overline{R E N}$ and $\overline{R C S}$ are enabled. Data is presented on the second RCLK.
InFWFT mode, the first word written to a selected Queue will automatically be placed onto the outputbus of that respective Queue regardless of the state of the corresponding read enable, provided thatthe selected Queue was empty and its corresponding output ready flag was inactive. The data will take four clocksto reachthe out-puttaking into accountthetwo-cycle write andtwo-cycle read pipeline. This occurs due to the nature of the FWFT flagtiming. Subsequent writes to the Queue that is not empty will not fall through to the outputbus. Note in FWFT mode, during a Queue selectionthe nextword available in the Queue will automatically fall throughtotheoutputbus regardless of the read enable and read chip select.

In IDTStandardmode, every word including the first word mustbe accessed by the $\overline{R E N}$ and $\overline{R C S}$. Unlike FWFT mode, during a Queue selection the next word available inthe Queue will not automatically fall through to the outputbus. The previous word that was read out of the read port will remain on the output busifthe $\overline{R E N}$ is HIGHan $\overline{R C S}$ isLOW, if $\overline{R C S}$ is HIGHtheoutputwill beHIGH-Z.

SIGNAL DESCRIPTIONS

INPUTS:
 DATA INPUT BUS (D[39:0])

The data input bus can be 40, 20, or 10 bits wide. D[39:0] are data inputs for the 40-bit wide data bus, $\mathrm{D}[19: 0]$ are data inputs for 20 -bit wide data bus, and $D[9: 0]$ are data inputs for the 10-bit wide data bus.

MASTER RESET ($\overline{\mathrm{MRS}}$)

There is a single master rese available forall internal Queues inthis device. Amaster resetisaccomplishedwheneverthe $\overline{\overline{M R S}}$ inputistakentoaLOW state. This operation sets the internal read and write pointers of all Queues to the first location in memory. The programmable almostempty flag will go LOW and the almostfullflags will go HIGH.

If FWFT/SI signal is LOW during master reset then IDT Standard mode is selected. This mode utilizes the empty and full status flags from the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{F F} / \bar{R}$ dual-purpose pin. During master reset, all empty flags will be setto LOW and all full flags will be set to HIGH .

If FWFT/SI signal is HIGH during master reset, then the First Word Fall Through mode is selected. This mode utilizes the input read and output ready status flags from the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{IR}}$ dual-purpose pin. During master reset, all input ready flags will be set to LOW and all output ready flags will be set to HIGH.

All device configuration pins such as OW[1:0], IW[1:0], IS[1:0], OS[1:0], WDDR, RDDR, IOSEL, FSEL[1:0] and FWFT/SI needs to be defined before the master reset cycle. During a master reset the output register is initialized to all zeros. If the output enable(s) are LOW during master reset, then the output bus will be LOW. Ifthe outputenable(s) are HIGH during master reset, then the output bus will be in High-impedance. $\overline{\mathrm{RCS}}$ has no affect on the data outputs during master reset. Ifthe output width OW[1:0] is configured to x10 or x20, then the unused outputs will be in high-impedance. A master reset is required after power up before a write operation to any Queue can take place. Master reset is an asynchronous signal and thus the read and write clocks can be freerunning or idle during master reset. See Figure 10, Master Reset Timing, for the associatedtiming diagram.

PARTIAL RESET ($\overline{\operatorname{RRS}} 0 / 1 / 2 / 3$)

A partial reset is a means by which the user can resetboththe read and write pointers of each individual Queue inside the device without changing the Queue's configuration. There are four dedicated partial reset signals that each correspond to an individual Queue. There are restrictions as to when partial reset can be performed in either operating modes.

During partial reset, the internal read and write pointers are set to the first location in memory, $\overline{\text { PAE }}$ goes LOW and $\overline{\text { PAF }}$ goes HIGH. Whichever timing mode was active atthe time of Partial Resetwill remain active after Partial Reset. If IDT Standard Mode is active, then $\overline{\mathrm{FF}}$ will go HIGH and $\overline{\mathrm{EF}}$ will go LOW. If the First Word Fall Through mode is active, then $\overline{\mathrm{OR}}$ will go HIGH and IR will goLOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The output registers are initializedto all zeros. All other configurations set up during master reset remain unchanged. $\overline{\mathrm{PRS}}$ is an asynchronous signal. See Figure 11, Partial Reset Timing, for the associated timing diagram.

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)

This is a dual purpose pin. During Master Reset, the state of the FWFT/SI input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.

IfFWFT/SI is LOW before the falling edge of master reset, then IDTStandard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}})$ to indicate whether or not there are any words present in the Queues. It also uses the Full Flag function ($\overline{\mathrm{FF}}$) to indicate whether or not the Queues has any free space for writing. In IDTStandard mode, every word read from the Queue, including the first, mustbe requested using the Read Enable ($\overline{\mathrm{REN}})$, ReadChipSelect $(\overline{\mathrm{RCS}})$ and RCLK.
IfFWFT/Sl isHIGH before the falling edge of master reset, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}})$ to indicate whether or not there is validdataatthe dataoutputs (Qn). Italso use InputReady $(\overline{\mathrm{R}})$ toindicate whether or not the Queues have any free space for writing. Inthe FWFT mode, the first word written to an empty Queue goes directly to output Qn after three RCLK rising edges, provided that the first RCLK meets tSKEw parameters. There will be a one RCLK cycle delay if tSKEW is not met. $\overline{\operatorname{REN}}$ and $\overline{\mathrm{RCS}}$ do notneed to beenabled. Subsequentwords mustbe accessed using the $\overline{R E N}$, $\overline{\mathrm{RCS}}$, and RCLK. If $\overline{\mathrm{RCS}}$ is HIGH, the output will be in high-impedance.
ThestateoftheFWFT/Slinputmustbekeptatthepresentstatefortheminimum of the reset recovery time (tRSR) after master reset. After this time, the FWFT/ Slacts as a serial inputforloading $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ offsets into the programmable offsetregisters. The serial inputis used inconjunction with SCLK, $\overline{\text { SWEN }}, \overline{\text { SREN }}$, and SDO to access the offset registers. Serial programming using the FWFT/ SI pin functions the same way in both IDT Standard and FWFT modes.

WRITE CLOCK (WCLK)

The writeclockis usedto write datato each individual Queue withinthe device. A write cycle is initiated on the rising and/or falling edge of the WCLK input. If the write double data rate (WDDR) mode pin is tied HIGH during master reset, data will be written on both the rising and falling edge of WCLK, provided that $\overline{W E N}$ and $\overline{W C S}$ areenabled. IfWDDR is tied LOW, data will be written only on the rising edge of WCLK provided that $\overline{\mathrm{WEN}}$ and $\overline{\mathrm{WCS}}$ are enabled.

Datasetupandholdtimesmustbemetwith respectotheLOW-to-HIGH (and HIGH-to-LOW in DDR) transition of the write clock(s). It is permissible to stop the write clock(s). Note that while the write clocks are idle, the $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ and $\overline{\mathrm{PAF}}$ flags will not be updated.

WRITE ENABLE ($\overline{\text { WEN }}$)

The write enable controls whether or not data will be written into the selected Queuememory. Whenthewriteenable inputisLOW onthe risingedge of WCLK in single data rate, data is loaded on the rising edge of every WCLK cycle, provided the device is not full and the write chip select ($\overline{\mathrm{WCS}}$) is enabled. The setup and hold times are referenced with respect to the rising edge of WCLK only. Whenthe write enable inputis LOW onthe rising edge of WCLKin double data rate, data is loaded into the selected Queue onthe rising and falling edge of every WCLK cycle, provided the device is not full and the write chip select (WCS) is enabled. In this mode, the data setup and hold times are referenced with respect to the rising and falling edge of WCLK. Note that $\overline{W E N}$ and $\overline{W C S}$ are sampled only on the rising edge of WCLK in either data rate mode.
Datais stored inthe Queues memory sequentially and independently of any ongoing read operation. When the write enable and write chip selectareHIGH, no new data is written into the corresponding Queue on each WCLK cycle.

WRITE CHIP SELECT ($\overline{\text { WCS }})$

The write chip selects disables the Write Port inputs if it is held HIGH. To perform normal write operationsthe writechip selectmustbeenabled, heldLOW.
When the writechip select is LOW on the rising edge of WCLK in single data rate, data is loaded on the rising edge of every WCLK cycle, provided the device is not full and the write enable ($\overline{\mathrm{WEN}}$) is LOW. When the $\overline{W C S}$ is LOW
on the rising edge ofWCLK, in double data rate, data is loaded into the selected Queue on the rising andfalling edge of every WCLK cycle, provided the device is not full and the write enable (WEN) is LOW.
When the write chipselectis HIGH onthe rising edge of WCLKin single data rate, the write port is disabled and no words are written on the rising edge of WCLKintothe Queue, evenif WENis LOW. If the write chip selectis HIGH on the rising edge of WCLK in double data rate, the write portis also disabled and no words are written on the rising and falling edge of WCLK into the Queue, even if $\overline{W E N}$ is LOW. Note that WCS is sampled on the rising edge of WCLK only in either data rate mode.

WRITE DOUBLE DATA RATE (WDDR)

When the write double data rate (WDDR) pinis HIGH prior to master reset, the write port will be set to double data rate mode. In this mode, all write operations are based on the rising andfallingedge of the write clocks, provided that write enables and write chip selects are LOW for the rising clock edges. Indouble data rate the write enable signals are sampled with respecttothe rising edge of write clock only, and a word will be written on both the rising and falling edge of write clock regardless of whether or not write enable is active on the falling edge of write clock.

When WDDR is LOW, the write port will be setto single data rate mode. In this mode, all write operations are based on only the rising edge of the write clock, provided that WEN and $\overline{W C S}$ are LOW during the rising edge of write clock. This pin should betied HIGH or LOW and cannottoggle before or after master reset.

READ CLOCK (RCLK)

The read clock is usedto read data from each individual Queue within the device. A read cycle is initiated on the rising and/orfalling edge of the RCLK input. Ifthe read double datarate(RDDR) mode pinistied HIGH atmaster reset, data will be read on both the rising and falling edge of RCLK, provided that $\overline{\text { REN }}$ and $\overline{\mathrm{RCS}}$ are enabled. IfRDDR is tied LOW a t master reset, data will be read only on the rising edge of RCLK provided that $\overline{\mathrm{REN}}$ and $\overline{\mathrm{RCS}}$ are enabled.

There is an associated data access time (tA) for the data to be read out of the Queues. It is permissible to stop the read clocks. Note that while the read clocks are idle, the $\overline{\mathrm{EF}} / \overline{\mathrm{RR}}$ and $\overline{\mathrm{PAE}}$ flags will not be updated.

READ ENABLE ($\overline{\operatorname{REN}})$

The read enable controls whether ornot data will be read out of the memory. When the read enable input is LOW on the rising edge of RCLKin single data rate, data will be read on the rising edge of every RCLK cycle, provided the device is notempty and the read chip select $(\overline{\mathrm{RCS}})$ is enabled. The associated data access time (ta) is referenced with respect to the rising edge of RCLK. When the read enable inputis LOW on the rising edge of RCLK in double data rate, data will be read on the rising and falling edge of every RCLK cycle, provided the device is notempty and $\overline{\mathrm{CCS}}$ is enabled. In this mode, the data accesstimes are referenced with respecttothe rising andfalling edges of RCLK. Note that $\overline{\mathrm{REN}}$ is sampled only on the rising edge of RCLK in either data rate mode.

Datais storedinthe Queues sequentially and independently of any ongoing write operation. When the $\overline{\operatorname{REN}}$ and $\overline{\mathrm{RCS}}$ are HIGH, no new data is read on each RCLK cycle.

To prevent reading from an empty Queue in the IDT Standard mode, the empty flag of each Queue will go LOW, with respect to RCLK, when the total number of words in the Queue has been read out, thus inhibiting further read operations. Upon the completion of a valid write cycle, the empty flag will go HIGH with respect to RCLK, two cycles later, thus allowing another read to occur given that tskew between WCLK and RCLK is met.

READ CHIP SELECT ($\overline{\mathrm{RCS}})$

The read chip select input provides synchronous control of the read port of the device. When the read chip selectis held LOW, the nextrising edge of the corresponding RCLK will enable the outputbus. When the read chip select goes HIGH, the next rising edge of RCLK will send the output bus into highimpedance and prevent that RCLKfrominitiatingaread, regardless of the state of REN. During a master orpartial Resetthe read chip selectinputhas no effect on the output bus, output enable ($\overline{\mathrm{OE}}$) is the only input that provides highimpedance control of the outputbus. If outputenable is LOW, the data outputs will be active regardless of read chip select until the firstrising edge of RCLK aftera resetis complete. Afterwards if read chip selectis HIGH the data outputs will goto high-impedance.
The read chip select input does not affect the updating of the flags. For example, whenthefirstword is writtentoany/all empty Queues, the emptyflags will still go from LOW to HIGH based on a rising edge of the RCLK, regardless ofthe state ofthe read chipselectinput. Also, whenoperatingthe QueueinFWFT mode the firstword written to any/all empty Queues will still be clocked through to the outputbus on the third rising edge of RCLK(s), regardless of the state of readchipselectinputs, assumingthatthetSKEw parameterismet. Forthis reason the user should pay extra attention to the read chip selects when a data word is written to any/all empty Queues in FWFT mode. Ifthe read chip selectinput is HIGH when an empty Queue is written into, the firstword will fall through to the outputregister but will not be available on the outputs because the bus is in high-impedance. The usermustenable the read chip selects on the nextrising edge of RCLK to access this first word. See Figure 28, Echo Read Clock and Read Enable Operation (IDT Standard Mode). See Figure 29, Echo RCLK and Echo Read Enable Operation (FWFT Mode).

READ DOUBLE DATA RATE (RDDR)

When the read double data rate (RDDR) pin tied HIGH, the read portwill be settodouble data rate mode sampledduring master reset. Inthis mode, all read operations are based onthe rising andfalling edge of the read clocks, provided thatreadenables and read chipselects areLOW. In DDR modethe readenable signalsare sampled with respectothe rising edge of read clock only, anda word will be read from both the rising and falling edge of read clock regardless of whether or not read enable and read chip select are active on the falling edge of read clock.
When RDDRistiedLOW duringmasterreset, the readportwill be settosingle data rate mode. In this mode, all read operations are based on only the rising edge ofthe RCLK, provided that $\overline{R E N}$ and $\overline{\mathrm{RCS}}$ are LOWduringthe risingedge of read clock. This pin should be tied HIGH or LOW and cannottoggle before andaftermasterreset.

OUTPUTENABLE($\overline{0 E}$)

The output enable controls whether the output bus will be in active or highimpedancestate. Whentheoutputenable inputisLOW, the outputbus becomes active anddrivesthedatacurrently intheoutputregister. Whentheoutputenable input $(\overline{\mathrm{EE}})$ is HIGH, the outputbus goes into high-impedance. During master or partial reset the outputenable is the only input that can place the outputdata bus into high-impedance. During resetthe read chip selectinputhas no effect on the outputdata bus.

I/O SELECT (IOSEL)

The inputs and outputs ofthis device can be configured for either LVTTL or HSTLeHSTL operation. Ifthe IOSEL pin is HIGH during master reset, then all applicable LVTTL or HSTL signals will be configured for HSTL/eHSTL operating voltage levels. To select between HSTL or eHSTL VREF must be driven to $1 / 2 \mathrm{VDDQ}$.

If the IOSEL pin is LOW during master reset, then all applicable LVTTL or HSTL signals will be configured for LVTTL operating voltage levels. In this configuration VDDQ should be setto the static core voltage of the 2.5V and VREF will be $1 / 2 \mathrm{~V}$ VDQ.

This pinshouldbetiedHIGH orLOW and cannottoggle before or aftermaster reset. Please refer to Table 5 for a list of applicable LVTTL/HSTL/eHSTL signals.

POWER DOWN ($\overline{\mathrm{PD}})$

This device has a power down feature intended for reducing power consumption for HSTL/eHSTL configured inputs when the device is idle fora long period of time. By entering the power down state certain inputs can be disabled, thereby significantly reducing the power consumption of the part. All $\overline{\text { WEN }}$ and RENsignals mustbedisabledforaminimum offourWCLK and RCLK cycles before activating the power down signal. The power down signal is asynchronous and needs to beheld LOW throughout the desired powerdown time. During powerdown, the following conditions forthe inputs/outputssignals are:

- All data in Queue(s) are retained.
- Alldatainputs become inactive.
- All write and read pointers maintaintheirlastvalue before powerdown.
- Allenables, chip selects, and clockinputpins become inactive.
- All data outputs become inactive and enter high-impedance state.
- All flagoutputs will maintaintheir currentstates before power down.
- All programmableflag offsets maintaintheirvalues.
- All Echo clock and enable will become inactive and enter highimpedancestate.
- The serial programming and JTAG portwill become inactive and enter high-impedancestate.
- All setup and configurationCMOS staticinputs are notaffected, as these pins are tied to a known value and do not toggle during operation.
Allinternal counters, registers, andflags will remainu unchanged and maintain theircurrentstate priortopowerdown. Clockinputs can be continuous andfreerunning during power down, but will have no affect on the part. However, itis recommended that the clockinputs be low whenthe powerdown is active. To exitpowerdown state and resume normal operations, disable the powerdown signal bybringingitHIGH. Theremustbeaminimum of 1μ swaitingperiod before read and write operations can resume. The device will continue from where it had stopped, noform of resetis required after exiting power down state. The power down feature does not provide any power savings when the inputs are
configuredforLVTTLoperation. However, itwill reduce the currentfor//Os that are not tied directly to Vcc or GND. See Figure 35, Power Down Operation, forthe associatedtiming diagram.

SERIAL CLOCK (SCLK)

The serial clockis usedtoloaddatato, and readdata from, the programmable offsetregisters. Data from the serial inputsignal (FWFT/SI) can be loaded into the offset registers on the rising edge of SCLK provided that the serial write enable ($\overline{(W W E N})$ signal is LOW. Data can be read from the offset registers via the serial data output(SDO) signal on the rising edge of SCLK provided that SRENisLOW.The serial clock can operate ata maximumfrequency of 10 MHz . The read operationis non-destructive. The write operation will change registers on each rising edge of SCLK

SERIAL WRITE ENABLE ($\overline{\text { SWEN }})$

The serial write enable inputis an enable usedforserial programming of the programmable offset registers. It is used in conjunction with the serial input (FWFT/SI) and serial clock (SCLK) when programming the offset registers. When the serial write enable is LOW, data at the serial input is loaded into the offsetregister, one bitforeachLOW-to-HIGH transition of SCLK. When serial write enable is HIGH, the offset registers retain the previous settings and no offsets are loaded. Serial write enable functions the same way in both IDT Standard and FWFT modes. Each bit that is loaded into the offset register is serially shifted throughthe register so each rising edge of SCLK will changethe value of the offsets.

SERIAL READ ENABLE ($\overline{\text { SREN }})$

The serial read enable input is an enable used for reading the value of the programmable offsetregisters. Itis used in conjunctionwiththe serial data output (SDO) and serial clock (SCLK) when reading the offset registers. When the serial read enable is LOW, data at the serial data output can be readfrom the offsetregister, one bitforeach LOW-to-HIGH Hransition of SCLK. When serial readenable is HIGH, the reading of the offsetregisters will stop. Wheneverserial read enable (SREN) is activated values inthe offset registers are read starting from the firstlocation in the offsetregisters. OnaHIGH to LOW transition, the SREN copies the values in the offset registers directly into a serial scan out register. SREN mustbekeptLOW in orderto read the entire contents ofthe offset register.Ifatany pointSRENistoggledfromHIGHtoLOW, anothercopyfunction fromthe offsetregistertothe serial scan outregisterwill occur. Serial readenable functions the same way in both IDT Standard and FWFT modes.

OUTPUTS:

DATA OUTPUT BUS (Q[39:0])

The data outputbus can be 40, 20, or 10 bits wide. Q[39:0] are data outputs for the 40-bit wide databus, Q[19:0] are data outputs for20-bit wide databus, and Q[9:0] are data outputs for the 10-bit wide data bus. In FWFT mode, when switching from one Queue to another, the data of the newly selected Queue will always be present on the output bus immediately, two rising RCLKedges after OS[1:0] is selected regardless of whether or not read enable and read chip selectare active.

EMPTY/OUTPUT READYFLAG(EF/DR0/1/2/3)

There are four empty/output ready flags available in this device, each corresponding to the individual Queues in memory. This is a dual-purpose pin that is determined based on the state of the FWFT/SI pin during master reset for selecting one of the, two timing modes of this device. In the IDT Standard mode, theemptyflags are selected. Whenanindividual Queueisempty, itsempty flag will go LOW, inhibiting further read operations from that Queue. Whenthe emptyflag is HIGH, the individual Queue is notempty and valid read operations canbeapplied. See Figure 18, Read Cycle, Empty Flagand First Word Latency Timing (IDTStandardMode), forthe relevanttiminginformation. Alsosee Table 3 "Status Flags for IDT Standard Mode" for the truth table of the empty flags.

InFWFT mode, the output ready flags are selected. Output ready flags ($\overline{\mathrm{OR}})$ goLOW atthe same time thatthe first word writtento an empty Queue appears ontheoutputs, which is a minimum of three readclock cyclesprovided the RCLK andWCLK meets the tSKEW parameter. $\overline{O R}$ stays LOW after the RCLKLOW-to-HIGHtransitions that shifts the lastwordfrom the Queue to the outputs. $\overline{\mathrm{OR}}$ goesHIGH when anenabled read operation is performedfrom anemptyqueue. The previous data stays on the outputs, indicating the last word was read. Further data reads are inhibited until a new word is on the bus when $\overline{\text { OR goes }}$ LOW again. See Figure 22, Read Timing at Full Boundary (FWFTMode), for the relevanttiming information. Also see Table 4 "Status Flags forFWFTMode" for the truthtable of the empty flags.

The empty/output ready flags are synchronous and updated on the rising edge of RCLK. In IDT Standard mode, the flags are double register-buffered outputs. In FWFT mode, the flag is triple register-buffered outputs. The four empty flags operate independent of one another and always indicate the respective Queue'sstatus.

COMPOSITE EMPTY/OUTPUT READY FLAG ($\overline{\mathrm{CEF}} / \overline{\mathrm{COR}})$

This status pin is used to determine the empty state of the current Queue selected. The composite empty/output ready flag represents the state of the Queue selected on the read port, such that the user does not have to monitor each individual Queues' empty/output ready flags.

Thetiming of the composite empty/output ready flag differs in IDT Standard and FWFT modes. In IDT Standardmode, when switching from one Queue to another, the composite empty flag will update tothe status of the newly selected Queue oneRCLK cycle afterthe rising edge of RCLKthat made the new Queue selection. InFWFT mode, the compositeoutputready flag will updatetothestatus of the newly selected Queue on two clock cycles after the rising edge of RCLK thatmadethenew Queue selection. See Figure23, Composite Empty Flag (IDT Standardmode), for the associated timing diagram. See Table3and 4"Status Flags for IDT Standard and FWFT Mode " for the truth table of the composite emptyflag.

FULL/INPUT READY FLAG (产//R0/1/2/3)

Therearefourfull/inputreadyflagsavailableinthisdevice, each corresponding totheindividual Queuesinmemory. This is adual-purposepinthatisdetermined
based on the state of theFWFT/SI pin during master resetfor selecting the two timing modes ofthis device. IntheIDTStandardmode, the full flags are selected. When an individual Queue is full, its full flags will go LOW after the rising edge of WCLK that wrote the last word, thus inhibiting further write operations to the Queue. Whenthe full flagis HIGH, the individual Queue is notfull and valid write operations can be applied. See Figure 12, Write Cycle, Full Flag Timing (IDT Standard Mode), for the associated timing diagram. Also see Table3"Status Flags for IDT Standard Mode" for the truth table of the full flags.
InFWFT mode, the input ready flags are selected. Input ready flags goLOW when there is adequate memory space in the Queues for writing in data. The input ready flags go HIGH after the rising edge of WCLKthatwrotethelastword, whenthere are nofree spaces availablefor writing in data. SeeFigure 16, Write Timing (FWFTMode), for the associated timing information. Also see Table4 "StatusFlagsfor FWFT Mode" for the truth table of the full flags. The inputready status not only measures the contents of the Queues, but also counts the presence of a word inthe output register. Thus, in FWFT mode, the total number of writes necessary to make $\overline{\mathrm{R}}$ HIGH is one greater than needed to set the $\overline{\mathrm{FF}}$ (LOW) in IDT Standard mode.
$\overline{F F} / \bar{R}$ is synchronous and updated on the rising edge of WCLK. $\overline{F F} / \bar{R}$ are double register-buffered outputs. The fourfullflags operate independent of one another.

To prevent dataoverflow inthe IDTStandardmode, thefullflag of each Queue will go LOW with respect to WCLK, when the maximum number of words has been written into the Queue, thus inhibiting furtherwrite operations. Upon the completion of a valid read cycle, the full flag will go HIGH with respectto WCLK twocycleslater, thus allowing anotherwrite to occurassumingtsKEw has been met.

To prevent data overflow in the FWFT mode, the input ready flag of each Queue will goHIGH with respectto WCLK, whenthemaximumnumber of words has been written into the Queue, thus inhibiting furtherwrite operations. Upon the completion of a valid read cycle, the input ready flag will go LOW with respect to WCLK two cycles later, thus allowing anotherwrite to occur assuming tSKEW has been met.

COMPOSITE FULL/INPUT READY FLAG ($\overline{\mathrm{CFF}} / \overline{\mathrm{CIR}}$)

Thisstatus pinis usedto determine the full state of the currentQueue selected. The composite full/input ready flag represents the state of the Queue selected on the write port, such that the user does not have to monitor each individual Queues' full/input ready flag. When switching from one Queue to another, the composite full/input ready flag will update to the status of the newly selected QueueoneWCLKcycleaftertherisingedge ofWCLKthatmadethenew Queue selection, regardless of whichtiming modethe device is operatingin. See Figure 25, Composite Full Flag (IDT Standard mode), for the relevant associated timing diagram. See Table 3and 4 "Status Flags for IDT Standard and FWFT Mode" for the truth table of the composite full flag

PROGRAMMABLEALMOST EMPTY FLAG($\overline{\mathrm{PAE}} 0 / 1 / 2 / 3$)

There are four programmable almost empty flags available in this device, each corresponding to the individual Queues in memory. The programmable almostemptyflagis anadditional statusflagthatnotifies the userwhenthe Queue is nearempty. The user may utilize this feature as an early indicator asto when the Queue will become empty. InIDT Standard mode, $\overline{\text { PAE }}$ will go LOW when there are n words or less in the Queue. In FWFT mode, the $\overline{\text { PAE will go LOW }}$ whentherearen-1 words or less inthe Queue. The offset "n" is the empty offset value. The default setting forthis value is stated in Table2. Since there are four internal Queues hence four PAE offset values, n0, n1, n2, and n3.
The four programmable almost empty flags operate independent of one another.

PROGRAMMABLE ALMOST FULL FLAG ($\overline{\mathrm{PAF}} 0 / 1 / 2 / 3$)

There are four programmable almost full flags available in this device, each corresponding to the individual Queues in memory. The programmable almost full flagis an additional statusflagthat notifies the userwhenthe Queue is nearly full. The user may utilize this feature as an early indicator as to when the Queue will not be able to accept any more data and thus prevent data from being dropped. InIDT Standard mode, if no reads are performed after master reset, $\overline{\text { PAF will go LOW after (D-m) (D meaning the density of the particular device) }}$ words are written to the Queue. In FWFT mode, $\overline{\text { PAF will go LOW after (D+1- }}$ m) words are writtentotheQueue. Theoffset"m"isthefull offsetvalue. The default setting for this value is stated in Table 2. Since there are four internal Queues hence four $\overline{P A F}$ offset values, $\mathrm{m} 0, \mathrm{~m} 1, \mathrm{~m} 2$, and m 3 .

The four programmablealmostfull flagsoperate independentofone another.

TABLE 6 - TSKEw MEASUREMENT

Data Port Configuration	Status Flags	TskEw Measurement	Datasheet Parameter
$\begin{aligned} & \text { DDR Input } \\ & \text { to } \\ & \text { DDR Output } \end{aligned}$	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW2
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW2
	$\overline{\text { PAE }}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW3
DDR Input to SDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW2
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW1
	$\overline{\text { PAE }}$	Negative Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW3
SDR Input to DDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW1
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW2
	$\overline{\text { PAE }}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Negative Edge RCLK to Positive Edge WCLK	tSKEW3
SDR Input to SDR Output	$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW1
	$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW1
	$\overline{\text { PAE }}$	Positive Edge WCLK to Positive Edge RCLK	tSKEW3
	$\overline{\text { PAF }}$	Positive Edge RCLK to Positive Edge WCLK	tSKEW3

ECHO READ CLOCK (ERCLK)

The echo read clock is a free-running clock output, that will always follow the RCLK input regardless of the read enables and read chip selects. The ERCLK output follows the RCLK input with an associated delay. This delay provides the user with a more effective read clock source when reading data from the output bus. This is especially helpful at high speeds when variables withinthedevice may causechanges inthe data accesstimes. These variations in access time may be caused by ambient temperature, supply voltage, or devicecharacteristics.

Any variations effecting the data access time will also have a corresponding effect ontheecho read clock output produced by the device, therefore theecho read clockoutputleveltransitions should always be atthe same position intime relative to the data outputs. Note, that echo read clock is guaranteed by design to be slowerthan the slowestdataoutputs. Referto Figure6, Echo Read Clock
and Data Output Relationship, Figure28, Echo Read Clock and Read Enable Operation in Double Data Rate Mode and Figure 29, Echo RCLK and Echo $\overline{R E N} O p e r a t i o n f o r t i m i n g ~ i n f o r m a t i o n . ~$

ECHO READ ENABLE (EREN)

The echo read enable output is provided to be used in conjunction with the echo read clock and provides the device receiving data from the Queue with a more effective scheme for reading the Queues' data. The echo read enable output is controlled by internallogic thatbecomes active for the read clock cycle that a new word is read out of the Queue. That is, a rising edge of read clock will causeecho read enable to go LOW, ifboth readenable and readchip select are active and the Queue is not empty. In other words, every cycle samples the output bus and drives $\overline{\operatorname{EREN}}$ output to the correct value.

NOTES:

1. $\overline{\mathrm{REN}}$ and $\overline{\mathrm{RCS}}$ are LOW. $\overline{\mathrm{OE}}$ is LOW.
2. terclk >tA, guaranteed by design.
3. Qslowest is the data output with the slowest access time, tA. In SDR mode.
4. Time, to is greater than zero, guaranteed by design.
5. Qslowest is the data output with the slowest access time, tA. In DDR mode.

Figure 6. Echo Read Clock and Data Output Relationship

Figure 7. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	IDT72T51248 IDT72T51258 IDT72T51268		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
Data OutputHold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	10	-	ns
	tDH		10	-	

JTAG
AC ELECTRICAL CHARACTERISTICS
(VCC $=2.5 \mathrm{~V} \pm 5 \%$; Tambient (Industrial) $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions			
			Min.	Max.	Units
JTAG Clock InputPeriod	tTCK	-	100	-	ns
JTAG Clock HIGH	tTCKHIGH	-	40	-	ns
JTAG Clock Low	tTCKLOW	-	40	-	ns
JTAGReset	tRST	-	50	-	ns
JTAG Reset Recovery	tRSR	-	50	-	ns

[^0]
JTAG TIMING SPECIFICATIONS (IEEE 1149.1 COMPLIANT)

The JTAG test port in this device is fully compliant with the IEEE Standard Test Access Port (IEEE 1149.1) specifications. Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. Note that IDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of seven basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)
- Bypass Register (BYR)
- ID Code Register
- Flag Programming

The following sections provide a brief description of each element. For a complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 8. JTAG Architecture

TEST ACCESS PORT (TAP)

The TAP interface is a general-purpose port that provides access to the internal JTAG state machine. It consists of four input ports (TCLK, TMS, TDI, TRST) and one output port (TDO).

THETAPCONTROLLER

The TAP controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and updating of data passed through the TDI serial input.

NOTES:

1. Five consecutive TCK cycles with $\mathrm{TMS}=1$ will reset the TAP.
2. TAP controller automatically resets upon power-up.
3. TAP controller must be reset before normal Queue operations can begin.

Figure 9. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram

All state transitions withinthe TAP controlleroccur atthe rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence overthe Queue operation and mustbe resetafter powerup of the device. See TRST description for more details on TAP controller reset.

Test-Logic-ResetAlltestlogicis disabledinthis controllerstate enablingthe normal operation ofthe IC. The TAP controllerstate machine is designedin such a way that, no matterwhatthe initial state ofthe controlleris, the Test-Logic-Reset state can be entered by holding TMS athigh and pulsing TCK five times. This is the reason why the Test Reset (TRST) pin is optional.

Run-Test-Idle In this controller state, the testlogic in the IC is active only if certaininstructions arepresent. For example, ifaninstruction activates the self test, thenitwill be executed whenthe controller enters this state. Thetestlogic in the $I C$ is idle otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the InstructionPathismade. TheControllercan returntothe Test-Logic-Resetstate otherwise.

Capture-IR Inthis controller state, the shiftregister bank in the Instruction Register parallelloads a pattern offixed values on the rising edge of TCK. The last two significant bits are always required to be "01".
Shitt-IR In this controller state, the instruction register gets connected between TDI and TDO, andthe captured pattern gets shifted on each risingedge of TCK. The instruction available onthe TDI pinis alsoshifted intothe instruction register. TDO changes on the falling edge of TCK.
Exit1-IRThis is a controllerstate where a decision toentereitherthe PauseIR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.
Exit2-DRThis is a controller state where a decisionto enter eitherthe ShiftIR state or Update-IR state is made.
Update-IR Inthis controllerstate, the instruction in the instruction registerscan chain is latched in to the register ofthe Instruction Registeron every fallingedge of TCK. This instructionalsobecomes the currentinstruction onceitis latched.
Capture-DR In this controller state, the data is parallelloaded in to the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The instruction register (IR) is eight bits long and tells the device what instruction istobeexecuted. Information contained intheinstruction includesthe mode of operation(eithernormalmode, in whichthe device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the four data registers is to be selected for inclusion in the scan path during data-register scans, and the source of datato be captured intothe selecteddataregisterduring Capture-DR.

TEST DATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertotheIEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. It containsa single stage shift registerfor a minimumlength inthe serial path. When the bypass register is selected by an instruction, the shift register stage is setto a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The boundary-scan register (BSR) is 48 bits long. It contains one boundary-scan cell(BSC) foreach normal-function inputpin and one BSC for eachnormal-function I/Opin(one single cell forbothinput dataand outputdata). TheBSR is used 1) to store test data that is to be applied externally to the device output pins, and/or2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the device to be determined throughthe TAP in response to the IDCODE instruction.

IDTJEDECID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72T51248/72T51258/72T51268, the Part Number field contains the following values:

Device	Part\# Field
IDT72T51248	04C1 (hex)
IDT72T51258	04C2 (hex)
IDT72T51268	04C3 (hex)

31 (MSB) 2827
Version (4 bits) 0000 Part Number (16-bit) Manufacturer ID (11-bit) 0033 (hex) 1

IDT72T51248/258/268 JTAG Device Identification Register

JTAG INSTRUCTION REGISTER

The Instruction register allows an instruction to be serially input into the device whenthe TAP controller is inthe Shift-IRstate. Theinstructionis decoded to perform the following:

- Selecttestdata registers that may operate while the instruction is current. The othertest data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdata registerpaththatisusedtoshiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function		
0000	EXTEST	Test external pins		
0001	SAMPLE/PRELOAD	Selectboundary scan register		
0002	IDCODE	Selectschipidentification register		
0003	CLAMP	Fixthe output chains to scan chain values		
0004	HIGH-IMPEDANCE	Puts alloutputs inhigh-impedance state		
0007	OFFSET READ	Read PAE/PAF offset registervalues		
0008	OFFSETWRITE	Write $\overline{\text { PAE/PAF offsetregister values }}$Selectbypass register 000 F		
	BYPASS	Private		Several combinations are private (for IDT
:---				
internal use). Do not use codes other than				
those identified above.				

JTAG Instruction Register Decoding

The following sections provide a brief description of each instruction. For acompletedescription refertotheIEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the device into an external boundary-testmode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip viathe boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-joint opens/shorts and of logic clusterfunction.

SAMPLE/PRELOAD

The requiredSAMPLE/PRELOAD instructionallows the device to remain in a normal functional mode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register can be accessed via a data scan operation, to take a sample of the functional data entering and leaving the device. This instruction is also used to preload test data into the boundary-scan registerbefore loading an EXTEST instruction.

IDCODE

The optional IDCODE instructionallows the device to remaininits functional mode and selects the optional device identification register to be connected betweenTDIandTDO. The device identification registeris a32-bitshiftregister containing information regarding the device manufacturer, device type, and version code. Accessing the device identification register does notinterfere with the operation of the device. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after powerup of the device or after the TAP has been reset using the optional TRST pin orby otherwise moving to the Test-Logic-Resetstate.

CLAMP

The optional CLAMP instruction sets the outputs of an deviceto logic levels determined by the contents of the boundary-scan register and selectsthe onebitbypass registerto be connected between TDI and TDO. Before loadingthis instruction, the contents of the boundary-scan register can be presetwith the SAMPLE/PRELOAD instruction. During this instruction, data can be shifted throughthe bypass registerfrom TDI to TDO without affecting the condition of theoutputs.

HIGH-IMPEDANCE

The optional High-Impedance instruction sets all outputs (includingtwo-state as well as three-state types) of an device to a disabled (high-impedance) state and selectsthe one-bitbypass registerto be connected between TDI and TDO. Duringthis instruction, data can be shiftedthrough the bypass registerfrom TDI to TDO without affecting the condition of the device outputs.

OFFSET READ

This instruction is an alternative to serial reading the offset registers for the $\overline{\text { PAE/PAF flags. When readingthe offsetregisters throught this instruction, the }}$ dedicated serial programming signals mustbe disabled.

OFFSET WRITE

This instruction is analternative to serial programmingthe offsetregistersfor the PAE/PAF flags. When writingthe offsetregisters through this instruction, the dedicated serial programming signals mustbe disabled.

BYPASS

The required BYPASS instruction allows the device to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the device.

NOTES:

1. During the input and/or output selection of two Queues, partial reset of the two Queues involved are prohibited.
2. During partial reset the high-impedance control of the output is provided by $\overline{\mathrm{OE}}$ only.
3. $\overline{\mathrm{PRS}} 0 / 1$ must go LOW after the fourth rising edge of RCLK/WCLK from where IS[1:0] and/or OS[1:0] transitioned.
4. This is the output data from Queue0 and Queue1.

Figure 11. Partial Reset Timing TEMPERATURERANGES

Figure 13. Write Cycle and Full Fag Timing in DDR mode (IDT Standard mode, DDR to DDR, x40 In to 440 Out)

Figure 14. Write Cycle and Full Fag Timing with bus-matching and rate matching (IDT Standard mode, DDR to SDR, x10 In to x20 Out)

Figure 15. Write Cycle and Full Fag Timing with rate matching (IDT Standard mode, SDR to DDR, x40 In to $\times 40$ Out)

NOTES: is less than tskEw2, then FFO deassertion may be delayed one extra WCLK cycle. (See Table 6- TSKEw
3. WCLK must be free running for $\overline{F F O}$ to update. TEMPERATURERANGES

NOTES: is less than tSKEW2, then $\overline{\mathrm{OR} 0}$ assertion may be delayed one extra RCLK cycle. (See Table 6 - TSKEW measurement)
$\bar{O} \bar{E}=L O W, \overline{\operatorname{RCS}}=L O W, \overline{W C S}=\operatorname{LOW}, W D D R=H I G H, \operatorname{RDDR}=H I G H, I S[1: 0]=00$, and $\mathrm{OS}[1: 0]=00$.
First data word latency $=$ tskEW $2+$ RCLK full period + tREF.
4. RCLK must be free running for $\overline{\mathrm{OR}} 0$ to update.
Figure 17. Write Cycle and First Word Latency Timing in DDR mode (FWFT mode, DDR to DDR, x40 In to $\times 40$ Out)

Figure 19. Read Cycle, Empty Flag and First Word Latency in DDR mode (IDT Standard mode, DDR to DDR, x40 In to $x 40$ Out)

Figure 20. Read Cycle, Empty Fag and First Word Latency with bus-matching and rate-matching (IDT Standard mode, DDR to SDR, x40 In to x20 Out)

NOTES: is less than tskewz, then FFO deassertion may be delayed one extra WCLK cycle. (See Table 6 - Tskew measurement). 2. $\mathrm{O}=$ LOW,
. RCL K must be free running for $\overline{\mathrm{EFO}}$ to update.
5. Word X LSB = D[19:0], Word X MSB $=\mathrm{D}[39: 20]$, Q[39:20] will be high-impedanced.
6. $\mathrm{Q}[39: 20]$ are not used and must be left open.

[^1]Figure 21. Read Cycle and Empty Flag Timing with bus-matching and rate-matching (IDT Standard mode, SDR to DDR, x10 In to x20 Out)

NOTES:

1. tSKEW1, is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{R}} 0$ will go HIGH (after one WCLK cycle plus twFF). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then the IR0 deassertion may be delayed one extra WCLK cycle. (See Table 6 - tSKEW measurement).
2. WCLK must be free running for $\overline{\mathrm{IR}} 0$ to update.
3. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{RCS}}=\mathrm{LOW}, \overline{W C S}=L O W, W D D R=L O W, R D D R=L O W, I W=10$, and $O W=10$.

Figure 22. Read Timing at Full Boundary (FWFT mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. $\overline{\operatorname{RCS}}=\mathrm{LOW}$, and $\overline{\mathrm{OE}}=\mathrm{LOW}$.
2. $\overline{\mathrm{EF}} 3$ is HIGH .
3. Word $D-1$ is the second to last word in Queue 1. Word D is the last word in Queue 1.
4. Word A is the next available word in Queue 3.
5. The composite empty flag will update to the newly selected Queue after one RCLK cycle once a new Queue has been selected using OS[1:0].

Figure 23. Composite Empty Flag (IDT Standard mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. $\overline{\operatorname{RCS}}=\mathrm{LOW}$, and $\overline{\mathrm{OE}}=\mathrm{LOW}$.
2. $\overline{\mathrm{OR}} 3$ is LOW.
3. Word $\mathrm{D}-1$ is the second to last word in Queue 1. Word D is the last word in Queue 1.
4. Word A is the next available word in Queue 3.
5. The composite output ready flag will update to the newly selected Queue after two RCLK cycles once a new Queue has been selected using OS[1:0].

Figure 24. Composite Output Ready Flag (FWFT mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. WCS = LOW.
2. $\overline{\mathrm{FF}} 3$ is HIGH.
3. Word D is the last word written that causes Queue 1 to be full.
4. Word A is the next word written to Queue 3.
5. The composite full flag will update to the newly selected Queue after one WCLK cycle once a new Queue has been selected using IS[1:0].

Figure 25. Composite Full Flag (IDT Standard mode, SDR to SDR, x40 In to x40 Out)

Figure 26. Composite Input Ready Flag (FWFT mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. The reading and writing to different Queues can occur at every clock cycle. There is a two cycle latency pipeline when switching from one Queue to another.
2. Word group A is written into Queue 0 . Word group B Queue 1. Word group C Queue 2. Word group D Queue 3.
3. The composite empty and full flags will update the status of the newly selected Queue one cycle clock after the Queue has been selected.
4. $\overline{O E}=$ LOW, WDDR $=H I G H$, and RDDR $=H$ HIG.
5. If FWFT mode is selected, the composite input ready flag ($\overline{\mathrm{CIR})}$) timing is the same as $\overline{\mathrm{CEF}}$. The composite output ready ($\overline{\mathrm{COR}}$) will update after two clock cycles instead of one.

Figure 27. Queue Switch at Every Clock Cycle (IDT Standard mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. The $\overline{\operatorname{EREN}}$ output is "or gated" to $\overline{\mathrm{RCS}}$ and $\overline{\mathrm{REN}}$ and will follow these inputs provided that the Queue is not empty. If the Queue is empty, $\overline{\mathrm{EREN}}$ will go HIGH to indicate that there is no new word available.
2. The EREN output is synchronous to RCLK.
3. $\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{WDDR}=\mathrm{HIGH}, \mathrm{RDDR}=\mathrm{HIGH}, \mathrm{IS}[1: 0]=00$, and $\mathrm{OS}[1: 0]=00$.
4. The truth table for EREN is shown below:

RCLK	$\overline{\mathrm{E}} \overline{\mathrm{F}}$	$\overline{\mathrm{RCS}}$	$\overline{\mathrm{REN}}$	$\overline{\text { EREN }}$
\uparrow	1	0	0	0
\uparrow	1	0	1	1
\uparrow	1	1	0	1
\uparrow	1	1	1	1
\uparrow	0	X	X	1

Figure 28. Echo Read Clock and Read Enable Operation (IDT Standard mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. The O / P Register is the internal output register. Its contents are available on the Qn output bus only when $\overline{R C S}$ and $\overline{O E}$ are both active, LOW, that is the bus is not in High-Impedance state.
2. $\overline{O E}$ is LOW.

Cycle:
a\&b. At this point the Queue is empty, $\overline{\mathrm{OR}} 0$ is HIGH.
$\overline{R C S}$ and $\overline{\operatorname{REN}}$ are both disabled, the output bus is High-Impedance.
c. Word $\mathrm{Wn}+1$ falls through to the output register, ORO goes active, LOW.
$\overline{\mathrm{RCS}}$ is HIGH, therefore the Qn outputs are High-Impedance. $\overline{\mathrm{EREN}}$ goes LOW to indicate that a new word has been placed into the output register.
d. EREN goes HIGH, no new word has been placed into the output register on this cycle.
e. No Operation.
f. $\quad \overline{\mathrm{RCS}}$ is LOW on this cycle, therefore the Qn outputs go to Low-Impedance and the contents of the output register (Wn+1) are made available.

NOTE: In FWFT mode it's important to take $\overline{\mathrm{RCS}}$ active LOW at least one cycle ahead of $\overline{\mathrm{REN}}$, this ensures the word (Wn+1) currently in the output register is made available for at least one cycle, otherwise $\mathrm{Wn}+1$ will not be overwritten by $\mathrm{Wn}+2$.
g. $\overline{R E N}$ goes active LOW, this reads out the second word, $W n+2$.
$\overline{\text { EREN }}$ goes active LOW to indicate a new word has been placed into the output register.
h. Word $\mathrm{Wn}+3$ is read out, EREN remains active, LOW indicating a new word has been read out.

NOTE: Wn+3 is the last word in the Queue.
i. This is the next enabled read after the last word, $W n+3$ has been read out. $\overline{\mathrm{OR}} 0$ flag goes HIGH and $\overline{\mathrm{EREN}}$ goes HIGH to indicate that there is no new word available.
4. $\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{WDDR}=\mathrm{LOW}, \mathrm{RDDR}=\mathrm{LOW}, \mathrm{IS}[1: 0]=00$, and $\mathrm{OS}[1: 0]=00$
5. The truth table for $\overline{\operatorname{EREN}}$ is shown below:

RCLK	$\overline{\text { OR }}$	$\overline{\text { RCS }}$	$\overline{\text { REN }}$	$\overline{\text { EREN }}$
\uparrow	0	0	0	0
\uparrow	0	0	1	1
\uparrow	0	1	0	1
\uparrow	0	1	1	1
\uparrow	1	X	X	1

Figure 29. Echo RCLK and Echo Read Enable Operation (FWFT mode, SDR to SDR, x40 In to x40 Out)

Figure 30. Echo Read Clock and Read Enable Operation (IDT Standard mode, DDR to DDR, x10 In to x10 Out)

Figure 32 Reading of Programmable Flag Registers (IDT Standard and FWFT modes)

NOTES:

1. $\mathrm{mO}=\overline{\mathrm{PAF}} 0$ offset .
2. $\mathrm{D}=$ maximum Queue depth. For density of Queue with bus-matching, refer to the bus-matching section pages 17-20.
3. tskEwz is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF0 will go HIGH (after one WCLK cycle plus tpafs). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskeww, then the PAFO deassertion time may be delayed one extra WCLK cycle.
4. PAFO is asserted and updated on the rising edge of WCLK only.
5. $\overline{\text { RCS }}=\mathrm{LOW}, \overline{\mathrm{WCS}}=\mathrm{LOW}, \mathrm{WDDR}=\mathrm{LOW}, \operatorname{RDDR}=\mathrm{LOW}, \operatorname{IS}[1: 0]=00$, and $\mathrm{OS}[1: 0]=00$.

Figure 33. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. $\mathrm{n} 0=\overline{\text { PAE }} 0$ offset.
2. For IDT Standard mode
3. For FWFT mode.
4. tskEwz is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\text { PAE }}$ will go HIGH (after one RCLK cycle plus tPAES). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskEwz, then the PAEO deassertion may be delayed one extra RCLK cycle.
5. $\overline{\text { PAEO }}$ is asserted and updated on the rising edge of WCLK only.
6. $\overline{\operatorname{RCS}}=\mathrm{LOW}, \overline{\mathrm{WCS}}=\mathrm{LOW}, \mathrm{WDDR}=\mathrm{LOW}, \operatorname{RDDR}=\mathrm{LOW}, \operatorname{IS}[1: 0]=00$, and $\mathrm{OS}[1: 0]=00$.

Figure 34. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT mode, SDR to SDR, x40 In to x40 Out)

NOTES:

1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted.
2. When the $\overline{\mathrm{PD}}$ input becomes deasserted, there will be a 1μ s waiting period before read and write operations can resume.

All input and output signals will also resume after this time period.
3. Set-up and configuration static inputs are not affected during power down.
4. Serial programming and JTAG programming port are inactive during power down.
5. $\overline{\mathrm{RCS}}=0, \overline{\mathrm{WCS}}=0$ and $\overline{\mathrm{OE}}=0$. These signals can toggle during and after power down.
6. All flags remain active and maintain their current states.
7. During power down, all outputs will be in high-impedance.
8. WDH = WD4 before power down.

Figure 35. Power Down Operation

ORDERING INFORMATION

NOTE:

1. Industrial temperature range product for the 5 ns and $6-7$ speed grades are available as a standard device.

[^0]: NOTE:

 1. 50 pf loading on external output signals.
[^1]: RCLK is less than tskew, then $\overline{\mathrm{EF}} 0$ deassertion may be delayed one extra RCLK cycle. (See Table 6 - Tskew measurement). $\overline{\mathrm{OE} O}=\mathrm{LOW}, \overline{\mathrm{RCS}}=\mathrm{LOW}, \overline{\mathrm{WCS}}=\mathrm{LOW}, \mathrm{WDDR}=\mathrm{LOW}, \mathrm{RDDR}=\mathrm{HIGH}, \mathrm{IW}=00$, and $\mathrm{OW}=01$.
 . First data word latency $=$ tSKEW $1+$ RCLK full period + tREF.
 3. First data word latency $=$ tsKEW $1+$ RCLK full period + tREF.
 4. RCLK must be free running for EFO to update.
 5. Word $W X L S B=D[9: 0]$, Word $W X M S B=D[19: 10$
 6. $D[39: 10]$ are not used and should be tied to GND. $\mathrm{Q}[39: 20]$ are not used and must be left open.

