inmos

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process - 1.6 Micron Design Rules
- $16 \mathrm{~K} \times 4$ Bit Organization
- $25,30,35,45$ and 55 nsec Access Times
- Fully TTL Compatible
- Common Data Input \& Output
- Three-state Output
- Power Down Function
- Single $+5 \mathrm{~V} \pm 10 \%$ Operation
- 22-Pin, 300-mil DIP (JEDEC Std.)
- 22-Pin Ceramic LCC (JEDEC Sid.)
- 24-Pin, 300-mil SOJ

DESCRIPTION

The INMOS IMS1620 is a high performance $16 \mathrm{~K} \times 4$ CMOS Static RAM. The IMS1620 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1620 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1620 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1624 is the functional equivalent of the IMS1620 with the addition of an Output Enable input.

The IMS1620M and IMS1620LM are MIL-STD-883 versions intended for military applications.

PIN CONFIGURATION

DIP

CHIP
CARRIER

PIN NAMES

$\mathbf{A}_{0} \cdot A_{13}$ ADDRESS INPUTS	UO DATA IN/OUT	
\bar{W}	WRITE ENABLE	VCc POWER $(+5 \mathrm{~V})$
\mathbf{E}	CHIP ENABLE	VSS GROUND

BLOCK DIAGRAM

SOJ

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss.........-2.0 to 7.0 V
Voltage on I/O.
 -1.0 to Vcc+0.5
Temperature Under Bias. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation 1 W
DC Output Current 25 mA
(One output at a time, one second duration)
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress raing only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may allect reliability

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
$V_{C C}$	Supply Voltage	4.5	5.0	5.5	V	
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Input Logic "1" Voltage	2.0		$\mathrm{VCC}^{2}+5$	V	All inputs
$\mathrm{V}_{\text {IL }}$	Input Logic "0" Voltage	-1.0°		0.8	V	All inputs
$\mathrm{T}_{\text {A }}$	Ambient Operating Temperature	0	25	70	${ }^{\circ} \mathrm{C}$	400 linear flmin air flow

${ }^{*} V_{\text {IL }}$ min $=-3$ volts for pulse width $<20 n s$, note b.
DC ELECTRICAL CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}\right)(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%)^{a}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
IcCı	Average Vcc Power Supply Current		$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	taVAV $=25 \mathrm{~ns}$ and 30 ns tavav $=35,45$ and 55 ns
IcC2	Vcc Power Supply Current (Standby, Stable TTL Input Levels)		25	mA	$\mathrm{E}>\mathrm{VIH}$. All other inputs at Vins Vil or 2 Vih
Icc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		14	mA	E 2 (Vcc-0.2). All other inputs at Vins 0.2 or 2 (Vcc-0.2V)
Icca	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		17	mA	$\mathrm{E} \geq$ (Vcc-0.2). Inputs cycling at Vins 0.2 or $>(\mathrm{Vcc}-0.2 \mathrm{~V})$
lıLK	Input Leakage Current (Any Input)		± 1	$\mu \mathrm{A}$	$\begin{aligned} & V c c=\max \\ & V \text { IN }=V \text { ss to } V c c \end{aligned}$
louk	Off State Output Leakage Current		± 5	$\mu \mathrm{A}$	$\begin{aligned} & V c c=\max \\ & V_{I N}=V s s \text { to } V c c \end{aligned}$
VOH	Output Logic "1" Voltage	2.4		V	$\mathrm{IOH}=-4 \mathrm{~mA}$
Vol	Output Logic "0" Voltage		0.4	V	$\mathrm{loL}=8 \mathrm{~mA}$

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels Vss to 3V	
Input Rise and Fall Times	
Input and Output Timing Reference Levels .. 1.5 V	
Output Load	Figure 1

CAPACITANCE ${ }^{b} \quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHZ}\right)$

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
CIN	Input Capacitance	4	pF	$\Delta \mathrm{V}=0$ 10 3V
Cout	Output Capacitance	7	pF	$\Delta \mathrm{V}=0$ to 3V

Note b: This parameter is sampled and not 100% tested

RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} s \operatorname{TAS} 70^{\circ} \mathrm{C}\right)(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$ READ CYCLE ${ }^{8}$

N	SYMBOL		PARAMETER	$\begin{gathered} \text { IMS } \\ 1620-25 \end{gathered}$		$\begin{gathered} \text { IMS } \\ 1620-30 \end{gathered}$		$\underset{1620-35}{\text { IMS }}$		$\underset{1620-45}{ }$		$\begin{gathered} \text { IMS } \\ 1620-55 \end{gathered}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~N} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	N T E S
	Standard	Alternate		MIN	MAX										
1	telov	t ACS	Chip Enable Access Time		25		30		35		45		55	ns	
2	tavav	$t \mathrm{RC}$	Read Cycle Time	25		30		35		45		55		ns	c
3	tavov	t AA	Address Access Time		25		30		35		45		55	ns	d
4	IAXOX	${ }^{1} \mathrm{OH}$	O/P Hold After Address Change	5		5		5		5		5		ns	
5	t ELOX	tLZ	Chip Enable to O/P Active	5		5		5		5		5		ns	1
6	tEHOZ	t HZ	Chip Disable to Output Inactive	0	15	0	15	0	15	0	20	0	25	ns	f, j
7	IELICCH	$t \mathrm{PU}$	Chip Enable to Power Up	0		0		0		0		0		ns	j
8	¢ EHICCL	$t P D$	Chip Enable to Power Down		25		30		35		45		55	ns	j
		! T	Input Rise and Fall Times		50		50		50		50		50	ns	e. j

Note c: For READ CYCLE $182, \bar{W}$ is high for entire cycle.
Note d: Device is continuously selected; E low.
Note e: Measured between VIL max and Vin min.
Nole 1: Measured $\pm 200 \mathrm{mV}$ from steady state output voltage Load capacitance is 5 pF
Note g: E and \bar{W} must transition between $V_{\text {IH }}$ to $V_{\text {IL }}$ or $V_{\text {IL }}$ to $V_{\text {IH }}$ in a monotonic fashion
Note j: Parameter guaranteed but not tested.

READ CYCLE $1^{\text {c.d }}$

READ CYCLE $2^{\text {c }}$

RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} S \mathrm{TA}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$ WRITE CYCLE 1: \bar{W} CONTROLLED ${ }^{\text {g.h }}$

No	SYMBOL		PARAMETER	$\begin{gathered} \text { IMS } \\ 1620-25 \end{gathered}$		$\underset{1620-30}{ }$		$\underset{\text { IMS }}{1620-35}$		$\begin{gathered} \text { IMS } \\ 1620-45 \end{gathered}$		$\underset{\text { IMS }}{1620-55}$		$\begin{aligned} & \text { U } \\ & \mathrm{N} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	NOTES
	Standard	Alternate		MIN	MAX										
9	tavav	t WC	Write Cycle Time	25		30		35		45		55		ns	
10	IWLWH	1 WP	Write Pulse Width	20		20		30		30		40		ns	
11	t ELWH	$t \mathrm{CW}$	Chip Enable to End of Write	20		20		30		30		40		ns	
12	tDVWH	t DW	Data Setup to End of Write	13		15		15		20		25		ns	
13	tWHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
14	tavWH	t AW	Address Setup End of Write	20		25		30		30		40		ns	
15	tAVWL	t AS	Address Setup to Start of Write	0		0		0		0		0		ns	
16	t WHAX	t WR	Address Hold after End of Write	5		5		5		0		0		ns	
17	tWLOZ	tWZ	Write Enable to Output Disable	0	15	0	15	0	20	0	20	0	25	ns	f.j
18	tWHOX	t OW	Write Enable to Ou*put Disable	0		0		0		0		0		ns	i

Nole f: Measured $\pm 200 \mathrm{mV}$ from steady state output voltage. Load capacitance is 5 pF .
Nole g: \bar{E} and \bar{W} must transition between $V_{I H}$ to $V_{\text {IL }}$ or $V_{I I}$ to $V_{\text {IH }}$ in a monotonic lashion.
Nole h : $\overline{\mathrm{E}}$ or $\overline{\mathrm{W}}$ musi be $\geqslant \mathrm{V}_{\text {IH }}$ during address transitions.
Note i: If W is low when \bar{E} goes low, the outputs remain in the high impedance state
Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \&\right.$ Tas $\left.70^{\circ} \mathrm{C}\right)(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$ WRITE CYCLE 2: E CONTROLLEDg, h

No	SYMBOL		PARAMETER	$\begin{gathered} \text { IMS } \\ 1620-25 \end{gathered}$		IMS		$\begin{gathered} \text { IMS } \\ 1620-35 \end{gathered}$		$\underset{1620-45}{\text { IMS }}$		$\begin{gathered} \text { IMS } \\ 1620-55 \end{gathered}$		$\begin{aligned} & \text { U } \\ & \text { N } \\ & \text { I } \\ & \text { T } \\ & \text { S } \end{aligned}$	NOTES
	Standard	Alternate		MIN	MAX										
19	tavav	t WC	Write Cycle Time	25		30		35		45		55		ns	
20	tWLEH	IWP	Write Pulse Width	20		20		30		30		40		ns	
21	IELEH	t CW	Chip Enable to End of Write	20		20		30		30		40		ns	
22	IDVEH	t DW	Data Setup to End of Write	13		15		15		20		25		ns	
23	t EHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
24	taver	t AW	Address Setup to End of Write	20		25		30		30		40		ns	
25	t EHAX	1 WR	Address Setup to Start of Write	5		5		5		0		0		ns	
26	tAVEL	i AS	Address Hold after End of Write	0		0		0		0		0		ns	
27	tWLOZ	IWZ	Write Enable to Output Disable	0	15	0	15	0	15	0	20	0	25	ns	f,j

Nole 1: Measured $\pm 200 \mathrm{mV}$ Prom sleady state output voliage. Load capacitance is 5 pF
Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic lashion.
Nole h: E or \bar{W} must be \geq VIH during address transitions
Note i: If \bar{W} is bow when \bar{E} goes low, the output remains in the high impedance state.
Nole j: Parameter guaranteed but not tested
WRITE CYCLE 2

DEVICE OPERATION

The IMS1620 has two control inputs, Chip Enable (IE) and Write Enable (W), 14 address inputs (AO-A13), and four Data I/O pins.

The/E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4 -bit word out of 16,384 . Read and Write operations on the memory cells are controlled by the $/ W$ input. With/E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels andeven lower with CMOS levels.

READ CYCLE

A read cycle is defined as $W_{\geq} \mathrm{V}_{\text {IH }}$ min with $/ \mathrm{E}_{\leq} \mathrm{V}_{\mathrm{IL}}$ max. Read access time is measured from either/E going low or from valid address

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while/E is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when / E goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when $/ E$ goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1620 is initiated by the latter of /E or W to transition from a high to a low. In the こase of /W falling last, the output buffers are turned on telox after the falling edge of $/ E$ (just as in a read cycle). The output buffers are then turned off within twlozof the falling edge of \mathcal{W}. During this interval $i t$ is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twloz to aviod bus contention.

WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of W. When $/ W$ goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of $/ E$. With /E high the outputs remain in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1620. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor

Current transients associated with the operation of any high speed device have very high frequency components, so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to
dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

Type	Package	Lead finish
A	Formed flat-pack	gold
B	Formed flat-pack	solder
C	LCC	gold
D	Cerdip	solder
E	Small outline, J-bend	solder
G	PGA	gold
H	Small outline, Gull wing	solder
J	PLCC, J-bend	solder
K	Sidebraze ceramic DIP	solder
N	Ceramic LCC	solder
P	Plastic DIP	solder
S	Sidebraze ceramic DIP	gold
T	(Skinny) Flat-pack	solder
W	Ceramic LCC	gold
Y	(Skinny) Flat-pack	gold

FIGURE 1. OUTPUT LOAD

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS1620	25ns	PLASTIC DIP	IMS1620P-25
	$25 n s$	CERAMIC DIP	IMS1620S-25
	25ns	CERAMIC LCC	IMS1620W-25
	25 ns	PLASTIC SOJ	IMS $1620 \mathrm{E}-25$
	30 ns	PLASTIC DIP	IMS1620P-30
	30 ns	CERAMIC DIP	IMS1620S-30
	30 ns	CERAMIC LCC	IMS1620W-30
	30 ns	PLASTIC SOJ	IMS1620E-30
	35ns	PLASTIC DIP	IMS1620P-35
	35ns	CERAMIC DIP	IMS1620S-35
	35ns	CERAMIC LCC	IMS1620W-35
	35ns	PLASTIC SOJ	IMS1620E-35
	45ns	PLASTIC DIP	IMS1620P-45
	45 ns	CERAMIC DIP	IMS1620S-45
	45ns	CERAMIC LCC	IMS1620W-45
	45ns	PLASTIC SOJ	IMS1620E-45
	55ns	PLASTIC DIP	IMS1620P-55
	55ns	CERAMIC DIP	IMS1620S-55
	55ns	CERAMIC LCC	IMS1620W-55
	55ns	PLASTIC SOJ	IMS1620E-55

PACKAGING INFORMATION

22 Pin Ceramic Dual-In-Line

Dim	Inches		mm	
	Nom	Tol	Nom	Tol
A	.118	.010	2.997	.254
A1	.035	.015	889	.381
B	.018	.003	457	152
B1	.060	Typ	1.524	Max
D	1.10	.013	27.94	.330
E	.315	.010	8.001	.254
E1	295	.015	7.493	.381
E1	100	.010	2.54	254
L	.145	.020	3.683	.508

> 2.54 0.100

22 Pin Leadless Chip Carrier

Dim	Inches		mm		Notes
	Nom	Tol	Nom	Tol	
A	.071	.007	1.803	.178	
B1	.025	.003	.635	.076	
D	.490	.006	13.446	.152	
E	.290	.006	7.366	.152	
E1	.050		1.270		

