INA115

Precision
 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: $50 \mu \mathrm{~V}$ max
- LOW DRIFT: $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION: 115dB min
- INPUT OVER-VOLTAGE PROTECTION: $\pm 40 \mathrm{~V}$
- WIDE SUPPLY RANGE: ± 2.25 TO $\pm 18 \mathrm{~V}$
- LOW QUIESCENT CURRENT: 3mA max
- SOL-16 SURFACE-MOUNT PACKAGE

APPLICATIONS

- SWITCHED-GAIN AMPLIFIER
- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA115 is a low cost, general purpose instrumentation amplifier offering excellent accuracy. Its versatile three-op amp design and small size make it ideal for a wide range of applications. Similar to the model INA114, the INA115 provides additional connections to the input op amps, A_{1} and A_{2}, which improve gain accuracy in high gains and are useful in forming switched-gain amplifiers.
A single external resistor sets any gain from 1 to 10,000 . Internal input protection can withstand up to $\pm 40 \mathrm{~V}$ without damage.

The INA115 is laser trimmed for very low offset voltage $(50 \mu \mathrm{~V})$, drift $\left(0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and high commonmode rejection (115 dB at $\mathrm{G}=1000$). It operates with power supplies as low as $\pm 2.25 \mathrm{~V}$, allowing use in battery operated and single 5 V supply systems. Quiescent current is 3 mA maximum.

The INA115 is available in the SOL-16 surface-mount package, specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise noted．

PARAMETER	CONDITIONS	INA115BU			INA115AU			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX					
INPUT Offset Voltage，RTI Initial vs Temperature vs Power Supply Long－Term Stability Impedance，Differential Common－Mode Input Common－Mode Range Safe Input Voltage Common－Mode Rejection	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{gathered}$ $\begin{gathered} V_{\mathrm{CM}}= \pm 10 \mathrm{~V}, \Delta \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$	$\begin{gathered} \pm 11 \\ \\ 80 \\ 96 \\ 110 \\ 115 \end{gathered}$	$\begin{gathered} \pm 10+20 / \mathrm{G} \\ \pm 0.1+0.5 / \mathrm{G} \\ 0.5+2 / \mathrm{G} \\ \pm 0.2+0.5 / \mathrm{G} \\ 10^{10} \\| 6 \\ 10^{10} \\| 6 \\ \pm 13.5 \\ \\ 96 \\ 115 \\ 120 \\ 120 \end{gathered}$	$\begin{gathered} \pm 50+100 / \mathrm{G} \\ \pm 0.25+5 / \mathrm{G} \\ 3+10 / \mathrm{G} \\ \\ \\ \pm 40 \end{gathered}$	$\begin{gathered} * \\ \\ 75 \\ 75 \\ 90 \\ 106 \\ 106 \end{gathered}$	$\begin{gathered} \pm 25+30 / \mathrm{G} \\ \pm 0.25+5 / \mathrm{G} \\ * \\ * \\ * \\ * \\ * \\ \\ 90 \\ 106 \\ 110 \\ 110 \end{gathered}$	$\begin{gathered} \pm 125+500 / \mathrm{G} \\ \pm 1+10 / \mathrm{G} \\ * \\ \\ \\ * \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ $\Omega \\| \mathrm{pF}$ $\Omega \\|_{V} p F$ V dB dB dB dB				
BIAS CURRENT vs Temperature			$\begin{gathered} \pm 0.5 \\ \pm 8 \end{gathered}$	± 2		$\begin{aligned} & \text { 水 } \\ & \text { 水 } \end{aligned}$	± 5	$\begin{gathered} \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \end{gathered}$				
OFFSET CURRENT vs Temperature			$\begin{gathered} \pm 0.5 \\ \pm 8 \end{gathered}$	± 2		$\begin{aligned} & \text { 水 } \\ & \text { 水 } \end{aligned}$	± 5	$\begin{gathered} \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \end{gathered}$				
NOISE VOLTAGE，RTI $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f_{B}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$ Noise Current $\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$	$\mathrm{G}=1000, \mathrm{R}_{\mathrm{S}}=0 \Omega$		$\begin{aligned} & 15 \\ & 11 \\ & 11 \\ & 0.4 \\ & 0.4 \\ & 0.2 \\ & 18 \end{aligned}$			＊ 水 水 ＊ ＊ 水 ＊		$\begin{aligned} & n \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mu \mathrm{Vp}-\mathrm{p} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pAp}-\mathrm{p} \end{aligned}$				
GAIN Gain Equation Range of Gain Gain Error Gain vs Temperature $50 \mathrm{k} \Omega$ Resistance ${ }^{(1)}$ Nonlinearity	$\begin{gathered} \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \\ \mathrm{G}=1 \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$	1	$\begin{gathered} 1+\left(50 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 2 \\ \pm 25 \\ \pm 0.0001 \\ \pm 0.0005 \\ \pm 0.0005 \\ \pm 0.002 \\ \hline \end{gathered}$	$\begin{gathered} 10000 \\ \pm 0.05 \\ \pm 0.4 \\ \pm 0.5 \\ \pm 1 \\ \pm 10 \\ \pm 100 \\ \pm 0.001 \\ \pm 0.002 \\ \pm 0.002 \\ \pm 0.01 \\ \hline \end{gathered}$	＊	水 水 ＊ ＊ 水 水 ＊ ＊ ＊ ＊ ＊	$\begin{gathered} * \\ * \\ \pm 0.5 \\ \pm 0.7 \\ \pm 2 \\ \pm 10 \\ * \\ \pm 0.002 \\ \pm 0.004 \\ \pm 0.004 \\ \pm 0.02 \\ \hline \end{gathered}$	V／V V／V $\%$ $\%$ $\%$ $\%$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\%$ of FSR $\%$ of FSR $\%$ of FSR $\%$ of FSR				
OUTPUT ${ }^{(2)}$ Voltage Load Capacitance Stability Short Circuit Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}, \mathrm{~T}_{\text {MII }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 10 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 13.7 \\ \pm 10.5 \\ \pm 1.5 \\ 1000 \\ +20 /-15 \end{gathered}$		$\begin{aligned} & \text { 水 } \\ & \text { 水 } \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{pF} \\ \mathrm{~mA} \end{gathered}$				
FREQUENCY RESPONSE Bandwidth，-3 dB Slew Rate Settling Time，0．01\％ Overload Recovery	$\begin{gathered} \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \\ V_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{G}=10 \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$ 50\％Overdrive	0.3	$\begin{gathered} 1 \\ 100 \\ 10 \\ 1 \\ 0.6 \\ 18 \\ 20 \\ 120 \\ 1100 \\ 20 \end{gathered}$		＊	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		MHz kHz kHz kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$				
POWER SUPPLY Voltage Range Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	± 2.25	$\begin{aligned} & \pm 15 \\ & \pm 2.2 \end{aligned}$	$\begin{gathered} \pm 18 \\ \pm 3 \end{gathered}$	＊	$\begin{aligned} & \text { 水 } \\ & \text { 水 } \end{aligned}$	$\begin{aligned} & \text { 水 } \\ & \text { 虽 } \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$				
TEMPERATURE RANGE Specification Operating θ_{JA}		$\begin{aligned} & -40 \\ & -40 \end{aligned}$	80	$\begin{gathered} +85 \\ +125 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	＊	$\begin{aligned} & \text { * } \\ & \text { 水 } \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

＊Specification same as INA115BU．
NOTE：（1）Temperature coefficient of the＂ $50 \mathrm{k} \Omega$＂term in the gain equation．（2）Output specifications are for output amplifier，A_{3} ．A_{1} and A_{2} provide the same output voltage swing but have less output current drive． A_{1} and A_{2} can drive external loads of $25 \mathrm{k} \Omega$｜｜ 200 pF ．

PIN CONFIGURATIONS

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... $\pm 18 \mathrm{~V}$	
Input Voltage Range	$\pm 40 \mathrm{~V}$
Output Short-Circuit (to ground)	Continuous
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature.	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	.. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering,	$+300^{\circ} \mathrm{C}$

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	(1)
TEMPERATURE			
RANGE			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

INPUT BIAS CURRENT

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

LARGE SIGNAL RESPONSE, $G=1$

LARGE SIGNAL RESPONSE, $G=1000$

SMALL SIGNAL RESPONSE, G = 1

SMALL SIGNAL RESPONSE, $G=1000$

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA115. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a typical device to degrade to approximately 80 dB CMR $(\mathrm{G}=1)$.

The INA115 has a separate output sense feedback connection (pin 12). Pin 12 must be connected (normally to the output terminal, pin 11) for proper operation. The output sense connection can be used to sense the output voltage directly at the load for best accuracy.

SETTING THE GAIN

Gain of the INA115 is set by connecting a single external resistor, R_{G} :

$$
\begin{equation*}
\mathrm{G}=1+\frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

Commonly used gains and resistor values are shown in Figure 1.
For $\mathrm{G}=1$, no resistor is required, but connect pins 2-3 and connect pins $14-15$. Gain peaking in $\mathrm{G}=1$ can be reduced by shorting the internal $25 \mathrm{k} \Omega$ feedback resistors (see typical performance curve Gain vs Frequency). To do this, connect pins 1-2-3 and connect pins 8-14-15.

The $50 \mathrm{k} \Omega$ term in equation 1 comes from the sum of the two internal feedback resistors. These are on-chip metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA115.
The stability and temperature drift of the external gain setting resistor, R_{G}, also affects gain. R_{G} 's contribution to gain error and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. The "force and sense" type connections illustrated in Figure 1 help reduce the effect of interconnection resistance.

FIGURE 1. Basic Connections.

SWITCHED GAIN

Figure 2 shows a circuit for digital selection of four gains. Multiplexer "on" resistance does not significantly affect gain. The resistor values required for some commonly used gain steps are shown. This circuit uses the internal $25 \mathrm{k} \Omega$ feedback resistors, so the resistor values shown cannot be scaled to a different impedance level.
Figure 3 shows an alternative switchable gain configuration. This circuit does not use the internal $25 \mathrm{k} \Omega$ feedback resistors, so the nominal values shown can be scaled to other impedance levels. This circuit is ideal for use with a precision resistor network to achieve excellent gain accuracy and lowest gain drift.

NOISE PERFORMANCE

The INA115 provides very low noise in most applications. For differential source impedances less than $1 \mathrm{k} \Omega$, the INA103 may provide lower noise. For source impedances greater than $50 \mathrm{k} \Omega$, the INA111 FET-Input Instrumentation Amplifier may provide lower noise.
Low frequency noise of the INA115 is approximately $0.4 \mu \mathrm{Vp}-\mathrm{p}$ measured from 0.1 to 10 Hz . This is approximately one-tenth the noise of "low noise" chopper-stabilized amplifiers.

OFFSET TRIMMING

The INA115 is laser trimmed for very low offset voltage and drift. Most applications require no external offset adjustment. Figure 4 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering the trim voltage with an op amp as shown.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA115 is extremely highapproximately $10^{10} \Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than ± 1 nA (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA115 is to operate properly. Figure 5 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA115 and the input amplifiers will saturate. If the differential source resistance is low, a bias current return path can be connected to one input (see thermocouple example in Figure 5). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due bias current and better common-mode rejection.

FIGURE 2. Switched-Gain Instrumentation Amplifier (minimum components).

FIGURE 3. Switched-Gain Instrumentation Amplifier (improved gain drift).

FIGURE 4. Optional Trimming of Output Offset Voltage.

FIGURE 5. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA115 is approximately $\pm 13.75 \mathrm{~V}$ (or 1.25 V from the power supplies). As the output voltage increases, however, the linear input range will be limited by the output voltage swing of the input amplifiers, A_{1} and A_{2}. The common-mode range is related to the output voltage of the complete amplifier-see performance curve "Input Common-Mode Range vs Output Voltage."
A combination of common-mode and differential input signals can cause the output of A_{1} or A_{2} to saturate. Figure 6 shows the output voltage swing of A_{1} and A_{2} expressed in terms of a common-mode and differential input voltages. Output swing capability of the input amplifiers, A_{1} and A_{2} is the same as the output amplifier, A_{3}. For applications where input common-mode range must be maximized, limit the output voltage swing by connecting the INA115 in a lower gain (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the INA115 to increase the voltage swing.

Input-overload often produces an output voltage that appears normal. For example, an input voltage of +20 V on one input and +40 V on the other input will obviously exceed the linear
common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA115 will be near 0 V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the INA115 are individually protected for voltages up to $\pm 40 \mathrm{~V}$. For example, a condition of -40 V on one input and +40 V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5 mA). The typical performance curve "Input Bias Current vs Common-Mode Input Voltage" shows this input current limit behavior. The inputs are protected even if the power supply voltage is zero.

OTHER APPLICATIONS

See the INA114 data sheet for other applications circuits of general interest.

FIGURE 6. Voltage Swing of A_{1} and A_{2}.

FIGURE 7. ECG Amplifier with Right Leg Drive.

INSTRUMENTS
PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings (4)	Samples
INA115AU	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR		INA115AU	Samples
INA115AU/1K	ACTIVE	SOIC	DW	16	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR		INA115AU	Samples
INA115AU/1KE4	ACTIVE	SOIC	DW	16	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR		INA115AU	Samples
INA115AUG4	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR		INA115AU	Samples
INA115BU	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		INA115BU	Samples
INA115BUG4	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		INA115BU	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement tha lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

[^0] TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \text { A0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
INA115AU/1K	SOIC	DW	16	1000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA115AU/1K	SOIC	DW	16	1000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals

