

ISO7230A ISO7231A SLLS906C - MAY 2008 - REVISED JUNE 2011

One Megabit per Second Triple Digital Isolators

Check for Samples: ISO7230A, ISO7231A

FEATURES

www.ti.com

- **1Mbps Signaling Rate**
 - Low Channel-to-Channel Output Skew; 2ns Maximum (5V-Operation)
 - Low Pulse-Width Distortion (PWD); 10ns Maximum (5V-Operation)
- **Typical 25-Year Life at Rated Working Voltage** (See Application note SLLA197 and Figure 10)
- 4000V_{peak} Isolation, 560V_{peak} V_{IORM}
 - UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2), IE 61010-1 and CSA Approved, IEC 60950-1
- **4kV ESD Protection**
- **Operate With 3.3V or 5V Supplies**

(See Application note SLLA181) -40°C to 125°C Operating Range

High Electromagnetic Immunity

APPLICATIONS

- **Industrial Fieldbus**
- **Computer Peripheral Interface**
- Servo Control Interface
- **Data Acquisition**

DESCRIPTION

See the Product Notification section. The ISO7230A and ISO7231A are triple-channel digital isolators each with multiple channel configurations and output-enable functions. These devices have logic input and output buffers separated by TI's silicon dioxide (SiO₂) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

The ISO7230 triple-channel device has all three channels in the same direction while the ISO7231 has two channels in one direction and one channel in opposition. These devices have an active-high output enable that when driven to a low level, places the output in a high-impedance state.

The ISO7230A and ISO7231A have TTL input thresholds and a noise-filter at the input that prevents transient pulses of up to 2ns in duration from being passed to the output of the device.

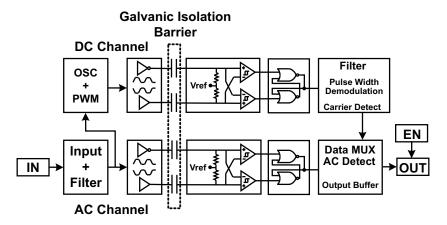
In each device a periodic update pulse is sent across the isolation barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. (Contact TI for a logic low failsafe option).

These devices require two supply voltages of 3.3V, 5V, or any combination. All inputs are 5V tolerant when supplied from a 3.3V supply and all outputs are 4mA CMOS. These devices are characterized for operation over the ambient temperature range of -40°C to 125°C.

ISO72 DW PACH		ISO7231 DW PACKAGE	
V _{CC1} □ 1 ● !!	16 - VCC2	V _{CC1} □ 1 ● !! 16 □ V	CC2
GND1 🖂 2	15🞞 GND2	GND1 □□2 15 □□ G	SND2
INA 떠3 – ▷ 님 님	≻14⊨⊐ OUT _A	IN _A □ 3 - 2 42 - 14 □ 0	UTA
IN _B □ 4 - ≻ H	,≻13¦⊐⊐ О∪Т _В		UT _B
№с ा 5–ЮЧ Ц	≻12⊨⊐ О∪Т _С	OUT _C ा 5 - ,	Nc
NC⊏⊏ 6 ii	11 🖽 NC		IC
NC 🖂 7 🔡	└─10 ── EN	EN1 œ 7 ┛ ╎╎ └─ 10 ⊨	N ₂
GND1 □ 8 ;;	9 🞞 GND2	$GND1 \blacksquare 8 \qquad \stackrel{i}{=} 9 \blacksquare G$	ND2

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS906C - MAY 2008 - REVISED JUNE 2011


www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTION DIAGRAM

Table 1. Device Function Table ISO723x ⁽¹⁾

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
		Н	H or Open	Н
	PU	L	H or Open	L
PU		Х	L	Z
		Open	H or Open	Н
PD	PU	Х	H or Open	Н
PD	PU	Х	L	Z

(1) PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level

AVAILABLE OPTIONS

PRODUCT	SIGNALING RATE	INPUT THRESHOLD	CHANNEL CONFIGURATION	MARKED AS	ORDERING NUMBER ⁽¹⁾
ISO7230ADW	1 Mbps	~1.5V (TTL) (CMOS compatible)	3/0	ISO7230A	ISO7230ADW (rail) ISO7230ADWR (reel)
ISO7231ADW	1 Mbps	~1.5 V (TTL) (CMOS compatible)	2/1	ISO7231A	ISO7231ADW (rail) ISO7231ADWR (reel)

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

					VALUE	UNIT
V _{CC}	Supply voltag	ge ⁽²⁾ , V _{CC1} , V _{CC2}			–0.5 to 6	V
VI	Voltage at IN	, OUT, EN			–0.5 to 6	V
I _O	Output currer		±15	mA		
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01		±4	
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1	kV
		Machine Model	ANSI/ESDS5.2-1996		±200	V
TJ	Maximum jun		170	°C		

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings (1) only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to network ground terminal and are peak voltage values. (2)

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage ⁽¹⁾ , V _{CC1} , V _{CC2}	3.15		5.5	V
I _{OH}	High-level output current	-4			mA
I _{OL}	Low-level output current			4	mA
t _{ui}	Input pulse width	1			μs
1/t _{ui}	Signaling rate	0	1500 ⁽²⁾	1000	kbps
V_{IH}	High-level input voltage (IN) (EN on all devices)	2		V_{CC}	V
VIL	Low-level input voltage (IN) (EN on all devices)	0		0.8	v
TJ	Junction temperature			150	°C
н	External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification			1000	A/m

For the 5V operation, V_{CC1} or V_{CC2} is specified from 4.5V to 5.5V. For the 3V operation, V_{CC1} or V_{CC2} is specified from 3.15V to 3.6V.
Typical signaling rate under ideal conditions at 25°C.

TEXAS INSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{cc1} and V_{cc2} at $5V^{(1)}$ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT							
	10070004	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no load,		1	3		
	ISO7230A	1 Mbps	EN ₂ at 3V		1	3	mA	
I _{CC1}	1007004 4	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no load,		6.5	11		
	ISO7231A	1 Mbps	EN ₁ at 3V, EN ₂ at 3V		6.5	11	mA	
	ISO7230A	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no load,		15	22	~ ^	
	1507230A	1 Mbps	EN ₂ at 3V		16	22	mA	
I _{CC2}	10070014	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no load,		13	20	~ ^	
	ISO7231A	1 Mbps	EN ₁ at 3V, EN ₂ at 3V		13	20	mA	
ELECTR	ICAL CHARACTERISTICS	5						
I _{OFF}	Sleep mode output curre	ent	EN at 0V, Single channel		0		μA	
V	High-level output voltage		I _{OH} = –4mA, See Figure 1	$V_{CC} - 0.8$			v	
V _{OH}	High-level output voltage	;	$I_{OH} = -20\mu A$, See Figure 1	V _{CC} – 0.1				
V	Low-level output voltage		I _{OL} = 4mA, See Figure 1			0.4	V	
V _{OL}	Low-level output voltage		I _{OL} = 20µA, See Figure 1			0.1	v	
V _{I(HYS)}	Input voltage hysteresis				150		mV	
I _{IH}	High-level input current		IN from 0\/ to \/			10		
IIL	Low-level input current		- IN from 0V to V _{CC}	-10			μA	
CI	Input capacitance to group	und	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF	
CMTI	Common-mode transient	t immunity	$V_{I} = V_{CC}$ or 0V, See Figure 4	25	50		kV/µs	

(1) For the 5V operation, V_{CC1} or V_{CC2} is specified from 4.5V to 5.5V. For the 3V operation, V_{CC1} or V_{CC2} is specified from 3.15V to 3.6V.

SWITCHING CHARACTERISTICS: V_{cc1} and V_{cc2} at 5V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	Sac Figure 1	40		95	20
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	- See Figure 1			10	ns
t _{sk(o)}	Channel-to-channel output skew ⁽²⁾			0	2	ns
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	20	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μs

(1) Also referred to as pulse skew.

(2) t_{sk(0)} is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} at 5V, V_{CC2} at 3.3V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMET	ER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT						4	
	10070004	Quiescent				1	3	0
	ISO7230A	1 Mbps	$-V_{I} = V_{CC}$ or 0V, All channels, no los	ad, EN_2 at 3V		1	3	mA
I _{CC1}	ISO7231A	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no lo	ad, EN₁ at 3V,		6.5	11	
	150723TA	1 Mbps	EN ₂ at 3V	-		6.5	11	mA
	ISO7230A	Quiescent	(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(ad ENL at 21/		9	15	mA
	1307230A	1 Mbps	$V_1 = V_{CC}$ or 0V, All channels, no load, EN ₂ at 3V			9.5	15	IIIA
I _{CC2}	ISO7231A	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no load, EN ₁ at 3V,			8	12	mA
	130723TA	1 Mbps	EN ₂ at 3V	EN ₂ at 3V		8	12	ША
ELECTR	RICAL CHARACTI	ERISTICS						
I _{OFF}	Sleep mode ou	tput current	EN at 0 V, Single channel	EN at 0 V, Single channel		0		μA
				ISO7230	$V_{CC} - 0.4$			
V _{OH}	High-level outp	ut voltage		ISO7231 (5-V side)	V _{CC} – 0.8			V
			$I_{OH} = -20\mu A$, See Figure 1		V _{CC} – 0.1			
V		it voltogo	I _{OL} = 4mA, See Figure 1				0.4	V
V _{OL}	Low-level outpu	u vollage	I _{OL} = 20µA, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hy	ysteresis				150		mV
I _{IH}	High-level input	t current					10	
I _{IL}	Low-level input	current	IN from 0V to V _{CC}		-10			μA
Cl	Input capacitan	ice to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$			2		pF
CMTI	Common-mode immunity	e transient	$V_{I} = V_{CC}$ or 0 V, See Figure 4		25	50		kV/µs

 $\begin{array}{ll} \mbox{(1)} & \mbox{For the 5-V operation, } V_{CC1} \mbox{ or } V_{CC2} \mbox{ is specified from 4.5V to 5.5V.} \\ & \mbox{For the 3V operation, } V_{CC1} \mbox{ or } V_{CC2} \mbox{ is specified from 3.15 V to 3.6 V.} \\ \end{array}$

SWITCHING CHARACTERISTICS: V_{CC1} at 5V, V_{CC2} at 3.3V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay, low-to-high-level output	ISO723xA	Case Firmers 4	40		100	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	15072384	See Figure 1			11	ns
t _{sk(o)}	Channel-to-channel output skew (2)	ISO723xA			0	2.5	ns
t _r	Output signal rise time	ise time			2		
t _f	Output signal fall time		See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impeda	nce output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-le	evel output			15	20	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output		- See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-low-le	vel output			15	20	
t _{fs}	Failsafe output delay time from input power le	oss	See Figure 3		18		μs

(1) Also known as pulse skew

(2) t_{sk(0)} is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} at 3.3V, V_{CC2} at 5V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMET	ER	TEST CONDITION	S	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT							
	ISO7230A	Quiescent		ad EN at 21/		0.5	1	~ ^
	1507230A	1 Mbps	$-V_{I} = V_{CC}$ or 0V, All channels, no los	ad, EN_2 at 3V		1	2	mA
I _{CC1}	10070244	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no los	ad, EN₁ at 3V,		4.5	7	~ ^
	ISO7231A	1 Mbps	EN ₂ at 3V			4.5	7	mA
	ISO7230A	Quiescent	$\lambda = \lambda = 0 \lambda$	ad ENL at 21/		15	22	mA
	1307230A	1 Mbps	$V_{I} = V_{CC}$ or 0V, All channels, no load, EN ₂ at 3V			16	22	ША
I _{CC2}	ISO7231A	Quiescent	$V_{I} = V_{CC}$ or 0V, All channels, no los	$V_1 = V_{CC}$ or 0V, All channels, no load, EN ₁ at 3V, EN ₂ at 3V		13	20	mA
	130723TA	1 Mbps	EN ₂ at 3V			13	20	ША
ELECTR	RICAL CHARACTI	ERISTICS						
I _{OFF}	Sleep mode ou	tput current	EN at 0V, Single channel	EN at 0V, Single channel		0		μA
				ISO7230	$V_{CC} - 0.4$			
V _{OH}	High-level outp	ut voltage	I _{OH} = -4mA, See Figure 1 (5-V side)	$V_{CC} - 0.8$			V	
			$I_{OH} = -20\mu A$, See Figure 1		V _{CC} – 0.1			
V	Low-level outpu	it voltogo	I _{OL} = 4mA, See Figure 1	I _{OL} = 4mA, See Figure 1			0.4	V
V _{OL}	Low-level outpu	it voltage	I _{OL} = 20μA, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hy	ysteresis				150		mV
I _{IH}	High-level input	t current	$ \mathbf{N} $ from (\mathbf{N}) to \mathbf{N}				10	
IIL	Low-level input	current	IN from 0V to V _{CC}		-10			μA
CI	Input capacitan	ce to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$			2		pF
СМТІ	Common-mode immunity	transient	$V_I = V_{CC}$ or 0V, See Figure 4		25	50		kV/µs

(1) For 5V operation, V_{CC1} or V_{CC2} is specified from 4.5V to 5.5V. For 3V operation, V_{CC1} or V_{CC2} is specified from 3.15V to 3.6V.

SWITCHING CHARACTERISTICS: V_{CC1} at 3.3V and V_{CC2} at 5V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	1007004		40		100	
PWD	Pulse-width distortion ⁽¹⁾ $ t_{PHL} - t_{PLH} $	ISO723xA	See Figure 1			11	ns
t _{sk(o)}	Channel-to-channel output skew (2)	ISO723xA			0	2.5	ns
t _r	Output signal rise time		- See Figure 1		2		
t _f	Output signal fall time				2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impe	edance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-hig	h-level output			15	20	ns
t _{PLZ}	Propagation delay, low-level-to-high-imped	dance output	- See Figure 2		15	20	
t _{PZL}	Propagation delay, high-impedance-to-low	-level output			15	20	
t _{fs}	Failsafe output delay time from input powe	Failsafe output delay time from input power loss			12		μs

(1) Also known as pulse skew

(2) $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3V⁽¹⁾ OPERATION

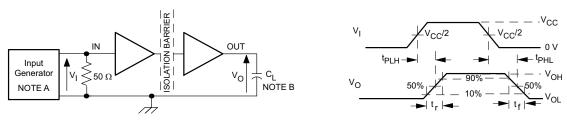
over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT					1		
	10.070004	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		0.5	1		
	ISO7230A	1 Mbps	EN ₂ at 3V		1	2	mA	
I _{CC1}	16070244	Quiescent	$V_{I} = V_{CC}$ or 0V, all channels, no load,		4.5	7		
	ISO7231A	1 Mbps	EN_1 at 3V, EN_2 at 3V		4.5	7	mA	
	ISO7230A	Quiescent	$V_{I} = V_{CC}$ or 0V, all channels, no load,		9	15	mA	
	1507230A	1 Mbps	EN ₂ at 3V		9.5	15	mA	
I _{CC2}	ISO7231A	Quiescent	$V_{I} = V_{CC}$ or 0V, all channels, no load,		8	12	mA	
	1507231A	1 Mbps	EN_1 at 3V, EN_2 at 3V		8	12	mA	
ELECTR	RICAL CHARACTERISTICS							
I _{OFF}	Sleep mode output current		EN at 0V, single channel		0		μA	
M	High-level output voltage		I _{OH} = -4mA, See Figure 1	$V_{CC} - 0.4$			V	
V _{OH}	High-level output voltage		$I_{OH} = -20\mu A$, See Figure 1	V _{CC} – 0.1			- V	
V			I _{OL} = 4mA, See Figure 1			0.4	V	
V _{OL}	Low-level output voltage		$I_{OL} = 20\mu A$, See Figure 1			0.1	v	
V _{I(HYS)}	Input voltage hysteresis				150		mV	
I _{IH}	High-level input current		IN from OV or V			10		
IIL	Low-level input current		IN from 0V or V _{CC}	-10			μA	
CI	Input capacitance to ground		IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		2		pF	
CMTI	Common-mode transient imr	nunity	$V_1 = V_{CC}$ or 0V, See Figure 4	25	50		kV/µs	

(1) For 5V operation, V_{CC1} or V_{CC2} is specified from 4.5V to 5.5V. For 3V operation, V_{CC1} or V_{CC2} is specified from 3.15V to 3.6V.

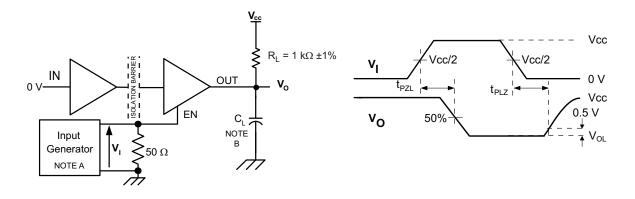
SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3-V OPERATION

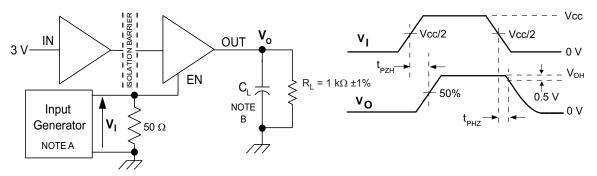
over recommended operating conditions (unless otherwise noted)


	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	ISO723xA	See Figure 1	45		110	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	150723XA	See Figure 1			12	ns
t _{sk(o)}	Channel-to-channel output skew (2)	ISO723xA			0	3	ns
t _r	Output signal rise time	See Figure 1		2			
t _f	Output signal fall time		See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-im			15	20		
t _{PZH}	Propagation delay, high-impedance-to-h	igh-level output			15	20	
t _{PLZ}	Propagation delay, low-level-to-high-imp	See Figure 2		15	20	ns	
t _{PZL}	Propagation delay, high-impedance-to-lo	ow-level output			15	20	
t _{fs}	Failsafe output delay time from input po	See Figure 3		18		μs	

(1)

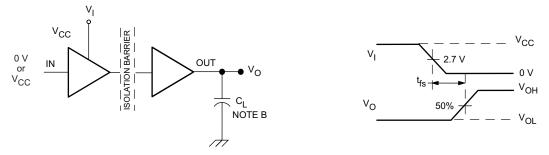
Also referred to as pulse skew. $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the (2) same direction while driving identical specified loads.




PARAMETER MEASUREMENT INFORMATION

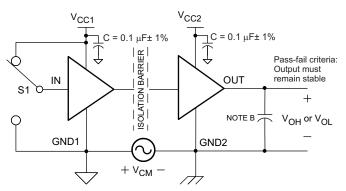
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50kHz, 50% duty cycle, t_r \leq 3ns, t_f \leq 3ns, Z_O = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms



- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50kHz, 50% duty cycle, t_r \leq 3ns, t_f \leq 3ns, Z_O = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



PARAMETER MEASUREMENT INFORMATION (continued)

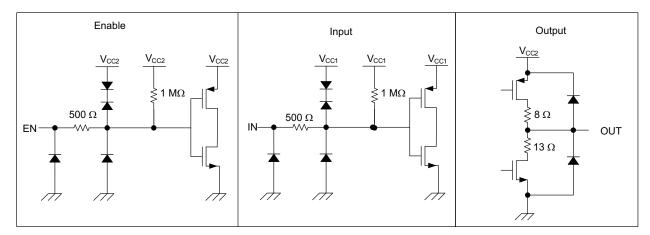
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50kHz, 50% duty cycle, t_r \leq 3ns, t_f \leq 3ns, Z_O = 50 Ω .
- B. $C_L = 15pF$ and includes instrumentation and fixture capacitance within ±20%.

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50kHz, 50% duty cycle, t_r \leq 3ns, t_f \leq 3ns, Z₀ = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 4. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

DEVICE INFORMATION

PACKAGE CHARACTERISTICS


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal-to-terminal distance through air	8.34			mm
L(I02) Minimum external tracking (Creepage)		Shortest terminal-to-terminal distance across the package surface	8.1			mm
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, $V_{IO} = 500V$, all pins on each side of the barrier tied together creating a two-terminal device, $T_A < 100^{\circ}C$		>10 ¹²		Ω
		Input to output, $V_{IO} = 500V$, $100^{\circ}C \le T_A \le T_A \text{ max}$		>10 ¹¹		Ω
CIO	Barrier capacitance Input to output	V _I = 0.4 sin (4E6πt)		2		pF
CI	Input capacitance to ground	V _I = 0.4 sin (4E6πt)		2		pF

REGULATORY INFORMATION

VDE	CSA	UL		
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾		
File Number: 40016131	File Number: 220991	File Number: E181974		

(1) Production tested \ge 3000 VRMS for 1 second in accordance with UL 1577.

DEVICE I/O SCHEMATICS

THERMAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA}	lucation to sh	Low-K Thermal Resistance ⁽¹⁾	168			°044
	Junction-to-air	High-K Thermal Resistance		96.1		°C/W
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
PD	Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50% duty cycle square wave			220	mW

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

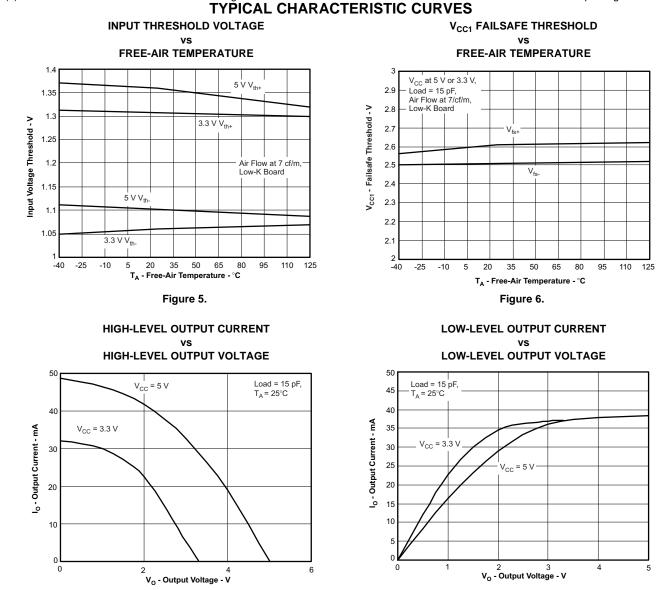


Figure 7.

Figure 8.

ISO7230A ISO7231A

SLLS906C - MAY 2008 - REVISED JUNE 2011

APPLICATION INFORMATION

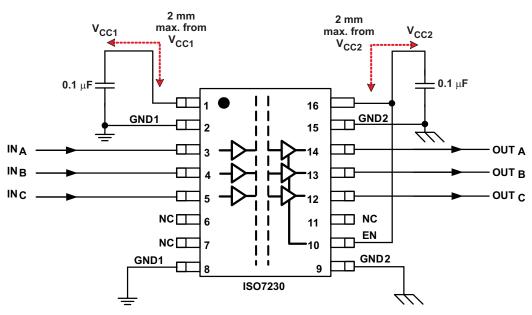


Figure 9. Typical ISO7230 Application Circuit

LIFE EXPECTANCY vs WORKING VOLTAGE

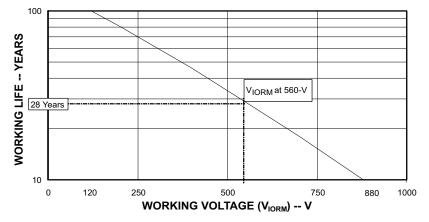


Figure 10. Time Dependant Dielectric Breakdown Testing Results

PRODUCT NOTIFICATION

An ISO723xA anomaly occurs when a negative-going pulse below the specified 1µs minimum bit width is input to the device. The output locks in a logic-low condition until the next rising edge occurs after a 1µs period.

Positive noise edges in pulses of less than the minimum specified 1µs have no effect on the device, and are properly filtered.

To prevent noise from interfering with ISO723xA performance, it is recommended that an appropriately sized capacitor be placed on each input of the device

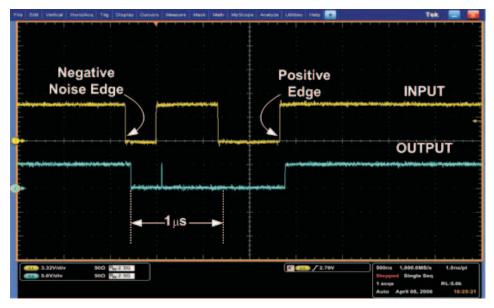


Figure 11. ISO723xA Anomaly

REVISION HISTORY

Changes from Original (May 2008) to Revision A

•	Added Product Notification section link.	1
•	Deleted text from paragraph 2 of the Description: "and turns off internal bias circuitry to conserve power"	1
•	Deleted Product Preview note	2
•	Changed From: 3 To: 3.15	3
•	Changed V _{CC} From: 3.6 To: 3.45	3
•	Changed I _{CC1} and I _{CC2} values From: TBD	4
•	Changed V _{CC} – 0.4 To: V _{CC} – 0.8	4
•	Changed Typical value from 1 To: 2	4
•	Changed Propagation delay max From: 80 To: 95	4
•	Changed I _{CC1} and I _{CC2} values From: TBD	5
•	Changed Typical value from 1 To: 2	5
•	Changed Propagation delay max From: 80 To: 100	5
•	Changed I _{CC1} and I _{CC2} values From: TBD	6
•	Changed Typical value from 1 To: 2	6
•	Changed Propagation delay max From: 80 To: 100	6
•	Changed I _{CC1} and I _{CC2} values From: TBD	7
•	Changed	7
•	Changed Typical value from 1 To: 2	
•	Changed Propagation delay max From: 85 To: 110	7
•	Changed L(101) Minimum air gap (Clearance) - minimum value from: 7.7mm to: 8.34mm	10
•	Changed Typical value from 1 To: 2	10
•	Changed Typical value from 1 To: 2	10
•	Changed the REGULATORY INFORMATION Table	10
•	Changed Figure 11	13

Changes from Revision A (June 2008) to Revision B

		_
•	Changed V _{CC} From: 3.45 To: 3.6	3

Changes from Revision B (July 2008) to Revision C

Changed "1ns" to "2ns", added "(5v-Operation)"	. 1
Changed "2ns" to "10ns", added "(5v-Operation)"	. 1
Deleted "Low Jitter Content; 1 ns Typ at 150 Mbps"	. 1
Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table.	. 3
Changed V _{CC} From: 3.6 To: 5.5	. 3
Corrected Figure 1	. 8
Changed File number "1698195" to "220991"	10
Corrected DEVICE I/O SCHEMATICS	10
Corrected Figure 9	12
	Changed "1ns" to "2ns", added "(5v-Operation)" Changed "2ns" to "10ns", added "(5v-Operation)" Deleted "Low Jitter Content; 1 ns Typ at 150 Mbps" Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. Changed V _{CC} From: 3.6 To: 5.5 Corrected Figure 1 Changed File number "1698195" to "220991" Corrected DEVICE I/O SCHEMATICS Corrected Figure 9

www.ti.com

Page

Page

Page

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ISO7230ADW	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7230ADWG4	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7230ADWR	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7230ADWRG4	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7231ADW	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7231ADWG4	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7231ADWR	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ISO7231ADWRG4	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

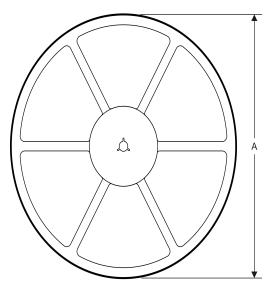
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

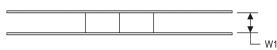
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

11-May-2011

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

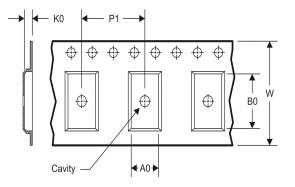
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

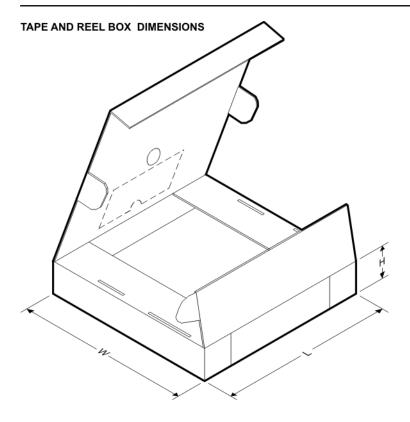
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

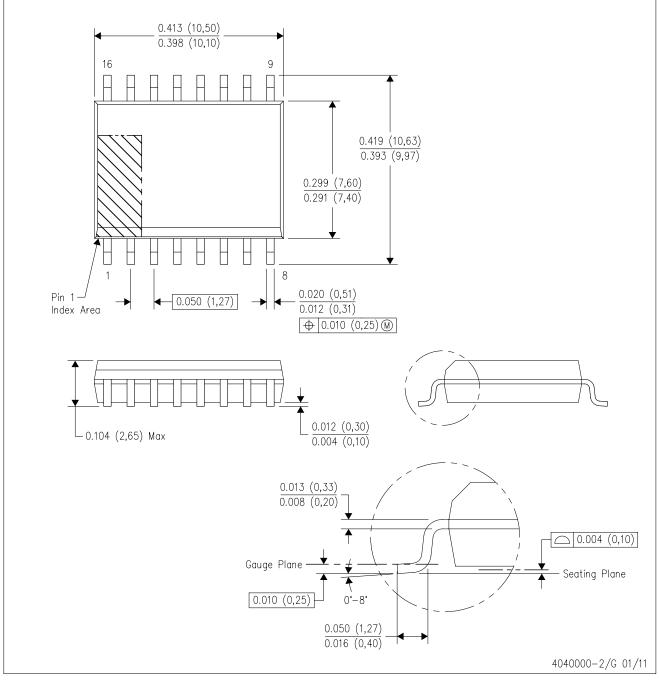

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7230ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7231ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



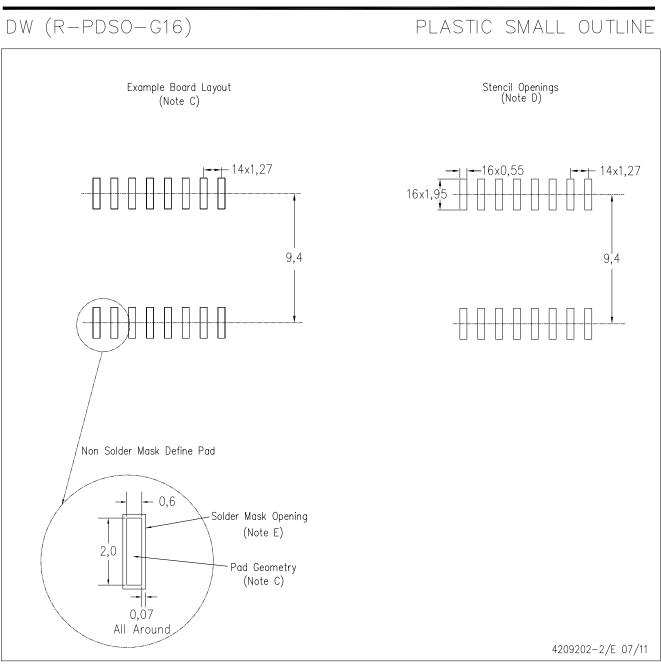
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7230ADWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7231ADWR	SOIC	DW	16	2000	367.0	367.0	38.0

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated