

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

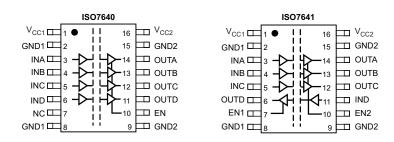
Low Power Quad Channels Digital Isolators

Check for Samples: ISO7640FM, ISO7641FM

FEATURES

- Signaling Rate: 150 Mbps
- Low Power Consumption, Typical I_{CC} per Channel (3.3 V Supplies):
 - ISO7640FM: 2 mA at 25 Mbps
 - ISO7641FM: 2.4 mA at 25 Mbps
- Low Propagation Delay: 7 ns Typical
- Output Defaults to Low-state in fail-safe mode
- Wide Temperature Range: -40°C to 125°C
- 50 KV/µs Transient Immunity, Typical
- Long Life with SiO₂ Isolation barrier
- Operates From 2.7V, 3.3 V and 5 V Supply and Logic Levels
- Wide Body SOIC-16 Package

APPLICATIONS


- Optocoupler Replacement in:
 - Industrial Fieldbus
 - Profibus
 - Modbus
 - DeviceNet[™] Data Buses
 - Servo Control Interface
 - Motor Control
 - Power Supplies
 - Battery Packs

SAFETY AND REGULATORY APPROVALS

- 6000 V_{PK} / 4243 V_{RMS} for 1 Minute per UL 1577 (approved)
- VDE Approval for DIN EN 60747-5-2 (VDE 0884 Rev. 2), 1414 V_{PK} Working Voltage (approved)
- CSA Component Acceptance Notice 5A, IEC 60601-1 Medical Standard (approved)
- 5 KV_{RMS} Reinforced Insulation per TUV for EN/UL/CSA 60950-1 and EN/UL/CSA 61010-1 (approved)

DESCRIPTION

ISO7640FM and ISO7641FM provide galvanic isolation up to 6 KV_{PK} for 1 minute per UL and VDE. These devices are also certified up to 5 KV_{RMS} Reinforced isolation at a working voltage of 400 V_{RMS} per end equipment standards EN/UL/CSA 60950-1 and 61010-1. ISO7640F and ISO7641F are quad channel isolators; ISO7640F has four forward and ISO7641F has three forward and one reverse direction channels. Suffix F indicates that output defaults to Low-state in fail-safe conditions (see Table 1). M-Grade devices are high speed isolators capable of 150 Mbps data rate with fast propagation delays

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ISO7640FM ISO7641FM

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION CONTINUED

Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO_2) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. The devices have TTL input thresholds and can operate from 2.7 V, 3.3 V and 5 V supplies. All inputs are 5 V tolerant when supplied from 3.3 V or 2.7 V supplies.

	PIN			DECODIDEION
NAME	ISO7640	ISO7641	I/O	DESCRIPTION
INA	3	3	I	Input, channel A
INB	4	4	Ι	Input, channel B
INC	5	5	Ι	Input, channel C
IND	6	11	Ι	Input, channel D
OUTA	14	14	0	Output, channel A
OUTB	13	13	0	Output, channel B
OUTC	12	12	0	Output, channel C
OUTD	11	6	0	Output, channel D
EN	10	-	I	Enables (when input is High or Open) or Disables (when input is Low) OUTA, OUTB, OUTC and OUTD of ISO7640
EN1	-	7	I	Enables (when input is High or Open) or Disables (when input is Low) OUTD of ISO7641
EN2	-	10	I	Enables (when input is High or Open) or Disables (when input is Low) OUTA, OUTB, and OUTC of ISO7641
V _{CC1}	1	1	-	Power supply, V _{CC1}
V _{CC2}	16	16	-	Power supply, V _{CC2}
GND1	2,8	2,8	-	Ground connection for V _{CC1}
GND2	9,15	9,15	-	Ground connection for V _{CC2}
NC	7	-	-	No Connect pins are floating with no internal connection

PIN DESCRIPTIONS

Table 1. FUNCTION TABLE⁽¹⁾

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (INx)	OUTPUT ENABLE (ENx)	OUTPUT (OUTx)
		Н	H or Open	Н
PU	PU	L	H or Open	L
PU		Х	L	Z
		Open	H or Open	L
PD	PU	Х	H or Open	L
PD	PU	Х	L	Z
PU	PD	Х	Х	Undetermined

(1) PU = Powered Up(V_{CC} \ge 2.7 V); PD = Powered Down (V_{CC} \le 2.1 V); X = Irrelevant; H = High Level; L = Low Level; Z = High Impedance

ISO7640FM ISO7641FM

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

	AVAILABLE OPTIONS									
PRODUCT	RATED ISOLATION	PACKAGE	INPUT THRESHOLD	DATA RATE and FILTER	CHANNEL DIRECTION	MARKED AS	ORDERING NUMBER			
ISO7640FM	6 KV _{PK} / 5 KV _{RMS} ⁽¹⁾		1.5 V TTL (CMOS Compatible)	No Noise Filter 3 Ecoward		1807640EM	ISO7640FMDW (rail)			
1307640FW		_{рк /} Is ⁽¹⁾ DW-16				1307640FW	ISO7640FMDWR (reel)			
ISO7641FM					3 Forward,	ISO7641FM	ISO7641FMDW (rail)			
130704TFM			-		1 Reverse	1307041FM	ISO7641FMDWR (reel)			

(1) See the Regulatory Information table for detailed isolation ratings.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

				VA		
PARAMETER				VALUE MIN MAX -0.5 6 -0.5 6 ±15 ±4 ±1.5 ±1.5		UNIT
Supply voltage ⁽²⁾	V _{CC1} , V _{CC2}	-0.5	6	V		
Voltage	INx, OUTx, ENx			-0.5	6	V
Output Current, I _O					±15	mA
	Human Body Model	ESDA, JEDEC JS-001-2012			±4	kV
Electrostatic discharge	Field-Induced Charged Device Model	JEDEC JESD22-C101E	All pins		±1.5	kV
	Machine Model	JEDEC JESD22-A115-A			±200	V
Maximum junction temperation	ature, T _J		÷		150	°C
Storage temperature, T _{STC}	3			-65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak

(2) voltage values.

RECOMMENDED OPERATING CONDITIONS

PARAMETER			MIN	ТҮР	MAX	UNIT
Supply voltage	V _{CC1} , V _{CC2}		2.7		5.5	V
High-level output current	I _{OH}		-4			mA
Low-level output current	I _{OL}				4	mA
High-level input voltage	V _{IH}		2		V_{CC}	V
Low-level input voltage	V _{IL}		0		0.8	V
Innut pulse duration		≥3V-Operation	6.67			ns
Input pulse duration	t _{ui}	<3V-Operation	10			
Circalian rate	4 / +	≥3V-Operation	0		150	Mbps
Signaling rate	1 / t _{ui}	<3V-Operation	0		100	
Junction temperature	TJ		-40		136	°C
Ambient temperature	T _A		-40	25	125	°C

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

www.ti.com

THERMAL INFORMATION

	THEDMA	AL METRIC ⁽¹⁾	ISO76xx	UNITS
	INERWA		DW (16 Pins)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	ce	72	
θ _{JC(top)}	Junction-to-case(top) thermal resistant	nction-to-case(top) thermal resistance		
θ_{JB}	Junction-to-board thermal resistance	39	°C/W	
ΨJT	Junction-to-top characterization para	neter	9.4	°C/W
Ψ _{JB}	Junction-to-board characterization pa	rameter	n/a	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal res	istance	n/a	
PD	Maximum Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5V$, $T_J = 150^{\circ}C$, $C_L = 15pF$ Input a 75 MHz 50% duty cycle square wave	399	mW

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953. **ELECTRICAL CHARACTERISTICS**

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V		I _{OH} = -4 mA; see Figure 1	$V_{CCx}^{(1)} - 0.8$	4.8		N/
V _{OH}	Low-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	$V_{CCx}^{(1)} - 0.1$	5		v
V		I _{OL} = 4 mA; see Figure 1		0.2	0.4	V
V _{OL}	Low-level output voltage	$I_{OL} = 20 \ \mu A$; see Figure 1		0	0.1	v
V _{I(HYS)}	Input threshold voltage hysteresis			450		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	$V_1 = V_{CC}$ or 0 V; see Figure 4	25	75		kV/µs

(1) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1	3.5	7	10.5		
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 1			2		
+ (2)	Channel-to-channel output skew time	Same-direction Channels		7 10. 	2	ns	
t _{sk(o)} ⁽²⁾	Channel-to-channel output skew time	Opposite-direction Channels			3		
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				4.5		
t _r	Output signal rise time	See Figure 1		1.6			
t _f	Output signal fall time	See Figure 1		1		ns	
t _{PHZ}	Disable Propagation Delay, high-to-high impedance output			5	16		
t _{PLZ}	Disable Propagation Delay, low-to-high impedance output	Opposite-direction Channels See Figure 1 See Figure 2 See Figure 2			5	16	
t _{PZH}	Enable Propagation Delay, high impedance-to- high output			4	16	ns	
t _{PZL}	Enable Propagation Delay, high impedance-to- low output			4 16			
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		9.5		μs	

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISO7640FM	·					
I _{CC1}	Disable	EN = 0 V		0.6	1.2	
I _{CC2}	Disable			4.5	6.6	
I _{CC1}	DC to 1 Mbps			0.7	1.3	
I _{CC2}	DC to 1 Mbps			4.6	6.7	
I _{CC1}	10 Mbps			1.1	2	mA
I _{CC2}		DC Signal: $V_I = V_{CC}$ or 0 V,		6.6	10.5	mA
I _{CC1}	25 Mbpo	AC Signal: All channels switching with square wave clock Mbps		1.9	3	
I _{CC2}	25 Mbps 150 Mbps			9.7	14.7	
I _{CC1}				8.2	14.5	
I _{CC2}				35	58	
ISO7641FM						
I _{CC1}	Disable	EN1 = EN2 = 0 V		2.6	4.2	
I _{CC2}	Disable			4.2	6.8	
I _{CC1}	DC to 1 Mbps			2.7	4.3	ĺ
I _{CC2}	DC to 1 Mbps			4.3	6.9	
I _{CC1}	10 Mbps			3.6	4.9	mA
I _{CC2}	10 10003	DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock		6	8.2	mA
I _{CC1}	25 Mbpc	input; $C_L = 15 \text{ pF}$		5.1	6.6	
I _{CC2}	25 Mbps	S Mops		8.8	11.4	
I _{CC1}	150 Mbps			17	22	
I _{CC2}				31	42	

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} at 5 V ± 10% and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		I _{OH} = -4 mA; see			4.8			
V		Figure 1	OUTx on V _{CC2} (3.3V) side	V _{CC2} - 0.4	3		V	
V _{OH}	High-level output voltage	$I_{OH} = -20 \ \mu A$; see	OUTx on V _{CC1} (5V) side	V _{CC1} - 0.1	5		v	
		Figure 1	OUTx on V _{CC2} (3.3V) side	V _{CC2} - 0.1	3.3			
		I _{OL} = 4 mA; see Figu	re 1		0.2	0.4	V	
V _{OL}	Low-level output voltage	$I_{OL} = 20 \ \mu A$; see Figure 1			0	0.1	v	
V _{I(HYS)}	Input threshold voltage hysteresis				430		mV	
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or E	Nx			10		
IIL	Low-level input current	V _{IL} = 0 V at INx or E	Nx	-10			μA	
CMTI	Common-mode transient immunity	$V_I = V_{CC} \text{ or } 0 \text{ V}; \text{ see}$	Figure 4	25	50		kV/µs	

SWITCHING CHARACTERISTICS

 V_{CC1} at 5 V ± 10% and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1	4	8	13	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 1			2	
4 (2)	Channel to shannel autout allow time	Same-direction Channels			13	ns
t _{sk(o)} ⁽²⁾	Channel-to-channel output skew time	Opposite-direction Channels		4 8 1 2 3 2 3 1.2 6.5 1 6.5 1 5.5 1	3.5	
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				6	
t _r	Output signal rise time		2	2		
t _f	Output signal fall time	See Figure 1		1.2		ns
t _{PHZ}	Disable Propagation Delay, high-to-high impedance output			6.5	17	
t _{PLZ}	Disable Propagation Delay, low-to-high impedance output	See Figure 2		6.5	17	
t _{PZH}	Enable Propagation Delay, high impedance-to- high output	See Figure 2		5.5	17	ns
t _{PZL}	Enable Propagation Delay, high impedance-to- low output			5.5	17	
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		9.5		μs

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

Copyright © 2011–2013, Texas Instruments Incorporated

SUPPLY CURRENT

 V_{CC1} at 5 V ± 10% and V_{CC2} at 3.3V ± 10% (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISO7640FM						
I _{CC1}	Disable	EN = 0 V		0.6	1.2	
I _{CC2}	Disable			3.6	5.1	
I _{CC1}	DC to 1 Mbps			0.7	1.3	mA
I _{CC2}	DC to T Mbps			3.7	5.2	
I _{CC1}	10 Mbps			1.1	2	
I _{CC2}	TO Mbps	AC Signal: $V_{L} = V_{CC}$ or $0 V$, AC Signal: All channels switching with square wave clock input; C_{L} = 15 pF		5	7.1	
I _{CC1}	25 Mbpo			1.9	3	
I _{CC2}	25 Mbps 150 Mbps			6.9	11	
I _{CC1}	150 Mbpp			8.2	14.5	
I _{CC2}			24	40		
ISO7641FM						
I _{CC1}	Disable	EN1 = EN2 = 0 V		2.6	4.2	
I _{CC2}	Disable	ENT = ENZ = 0 V		3.2	4.9	
I _{CC1}	DC to 1 Mbps			2.7	4.3	
I _{CC2}	DC to T Mbps			3.3	5	
I _{CC1}	10 Mbps			3.6	4.9	mA
I _{CC2}		DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; C_L		4.4	5.8	IIIA
I _{CC1}	25 Mbps	= 15 pF		5.1	6.6	-
I _{CC2}				6.1	7.6	
I _{CC1}	1E0 Mbpp			17	22	
I _{CC2}	- 150 Mbps			20.6	26.5	

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} at 3.3 V ± 10% and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	ТҮР	MAX	UNIT
		I _{OH} = -4 mA; see Figure 1	OUTx on V _{CC1} (3.3 V) side	V _{CC1} -0.4	3		
V _{OH}	List level extent veltage		OUTx on V _{CC2} (5 V) side	V _{CC2} -0.8	4.8		V
	High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	OUTx on V _{CC1} (3.3 V) side	V _{CC1} -0.1	3.3		v
			OUTx on V _{CC2} (5 V) side	V _{CC2} -0.1	5		
		I _{OL} = 4 mA; see Figure 1			0.2	0.4	V
V _{OL}	Low-level output voltage	$I_{OL} = 20 \ \mu A$; see Figure 1			0	0.1	v
V _{I(HYS)}	Input threshold voltage hysteresis				430		mV
I _{IH}	High-level input current	$V_{IH} = V_{CC}$ at INx or ENx				10	
IIL	Low-level input current	V _{IL} = 0 V at INx or ENx		-10			μA
CMTI	Common-mode transient immunity	$V_{I} = V_{CC}$ or 0 V; see Figure 4	ł	25	50		kV/µs

SWITCHING CHARACTERISTICS

 V_{CC1} at 3.3 V ± 10% and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1	4	7.5	12.5	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	- See Figure 1			2	
• (2)	Channel to shannel autout alrow time	Same-direction Channels			2.5	ns
$t_{sk(o)}^{(2)}$	Channel-to-channel output skew time	Opposite-direction Channels			3.5	
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				6	
tr	Output signal rise time			1.7		
t _f	Output signal fall time	See Figure 1		1.1		ns
t _{PHZ}	Disable Propagation Delay, high-to-high impedance output			5.5	17	
t _{PLZ}	Disable Propagation Delay, low-to-high impedance output			5.5	17	
t _{PZH}	Enable Propagation Delay, high impedance-to-high output	- See Figure 2		4.5	17	ns
t _{PZL}	Enable Propagation Delay, high impedance-to-low output			4.5	17	
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		9.5		μs

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

Copyright © 2011–2013, Texas Instruments Incorporated

SUPPLY CURRENT

V_{CC1} at 3.3 V ± 10% and V_{CC2} at 5 V ± 10% (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISO7640FM						
I _{CC1}	Disable	EN = 0 V		0.35	0.7	
I _{CC2}	Disable			4.5	6.6	
I _{CC1}	DC to 1 Mbps	1 Mbps		0.4	0.8	
I _{CC2}	DC to T Mbps			4.6	6.7	
I _{CC1}	- 10 Mbps			0.7	1.2	mA
I _{CC2}	10 100003	DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; $C_L = -$		6.6	10.5	IIIA
I _{CC1}	– 25 Mbps	15 pF		1.1	2	
I _{CC2}			9.7	14.7		
I _{CC1}	- 150 Mbps			5	8.5	
I _{CC2}	100 1005			35	58	
ISO7641FM						
I _{CC1}	– Disable	EN1 = EN2 = 0 V		1.9	2.9	
I _{CC2}	Disable			4.2	6.8	
I _{CC1}	DC to 1 Mbps			2	3	
I _{CC2}	De le 1 Mops			4.3	6.9	
I _{CC1}	- 10 Mbps			2.5	3.5	mA
I _{CC2}		DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; $C_I =$		6	8.2	ШA
I _{CC1}	25 Mbps	15 pF		3.4	4.5	
I _{CC2}				8.8	11.4	
I _{CC1}	- 150 Mbps			10.5	14.5	
I _{CC2}				31	42	

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

XAS

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	Lligh lovel output veltage	I _{OH} = -4 mA; see Figure 1	$V_{CCx}^{(1)} - 0.4$	3		V
V _{OH}	High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	$V_{CCx}^{(1)} - 0.1$	3.3		v
V		I _{OL} = 4 mA; see Figure 1		0.2	0.2 0.4 V	
V _{OL}	Low-level output voltage	$I_{OL} = 20 \ \mu A$; see Figure 1		0	0.1	v
V _{I(HYS)}	Input threshold voltage hysteresis			425		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	$V_1 = V_{CC}$ or 0 V; see Figure 4	25	50		kV/µs

(1) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V \pm 10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time		4	8.5	14	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} – t _{PLH}	See Figure 1			2	
 (2) 	Channel to channel output allow time	Same-direction Channels			3	ns
$t_{sk(o)}^{(2)}$	Channel-to-channel output skew time	Opposite-direction Channels			4	
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				6.5	
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	See Figure 1		1.3		ns
t _{PHZ}	Disable Propagation Delay, high-to-high impedance output			6.5	17	
t _{PLZ}	Disable Propagation Delay, low-to-high impedance output			6.5	17	
t _{PZH}	Enable Propagation Delay, high impedance-to-high output	See Figure 2		5.5	17	ns
t _{PZL}	Enable Propagation Delay, high impedance-to-low output			5.5	17	
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		9.2		μs

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

SUPPLY CURRENT

 V_{CC1} and V_{CC2} at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
ISO7640FM	ľ					
I _{CC1}	Disable	EN = 0 V		0.35	0.7	
I _{CC2}	Disable	EN = 0.0		3.6	5.1	
I _{CC1}	DC to 1 Mbps			0.4	0.8	
I _{CC2}	DC to T Mbps			3.7	5.2	
I _{CC1}	10 Mbps			0.7	1.2	mA
I _{CC2}	TO Mbps	DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; $C_L = -$		5	7.1	ШA
I _{CC1}	25 Mbps	15 pF		1.1	2	
I _{CC2}	25 10005			6.9	11	
I _{CC1}	- 150 Mbps			5	8.5	
I _{CC2}	130 1005			24	40	
ISO7641FM						
I _{CC1}	Disable	EN1 = EN2 = 0 V		1.9	2.9	
I _{CC2}	Disable	ENT = ENZ = 0.0		3.2	4.9	
I _{CC1}	DC to 1 Mbps			2	3	
I _{CC2}	DC to T Mbps			3.3	5	
I _{CC1}	10 Mbps			2.5	3.5	mA
I _{CC2}	- 25 Mbps	DC Signal: $V_1 = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; $C_1 =$		4.4	5.8	ШA
I _{CC1}		AC Signal. All channels switching with square wave clock input, $C_L = 15 \text{ pF}$		3.4	4.5	
I _{CC2}	23 10005			6.1	7.6	
I _{CC1}	150 Mbpa			10.5	14.5	
I _{CC2}	150 Mbps			20.6	26.5	

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

NSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS

V_{CC1} and V_{CC2} at 2.7 V⁽¹⁾ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
N/		I _{OH} = -4 mA; see Figure 1	$V_{CC}^{(2)} - 0.5$	2.4		
V _{OH}	High-level output voltage	$I_{OH} = -20 \ \mu A$; see Figure 1	$V_{CC}^{(2)} - 0.1$	2.7		V
V _{OL} Lo		I _{OL} = 4 mA; see Figure 1		0.2	7 2 0.4 0 0.1	
	Low-level output voltage	I _{OL} = 20 μA; see Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis			350		mV
I _{IH}	High-level input current	V _{IH} = V _{CC} at INx or ENx			10	
IIL	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	$V_1 = V_{CC}$ or 0 V; see Figure 4	25	50		kV/μs

(1) For 2.7 V-operation, max data rate is 100 Mbps.

(2) V_{CCx} is the supply voltage, V_{CC1} or V_{CC2} , for the output channel that is being measured.

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	One Firmer (5	8	16	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 1			2.5	
• (2)	Channel to channel output allow time	Same-direction Channels			4	ns
$t_{sk(o)}^{(2)}$	Channel-to-channel output skew time	Opposite-direction Channels			5	
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				8	
t _r	Output signal rise time			2.3		
t _f	Output signal fall time	See Figure 1		1.8		ns
t _{PHZ}	Disable Propagation Delay, high-to-high impedance output			8	18	
t _{PLZ}	Disable Propagation Delay, low-to-high impedance output			8	18	
t _{PZH}	Enable Propagation Delay, high impedance-to- high output	See Figure 2		7	18	ns
t _{PZL}	Enable Propagation Delay, high impedance-to- low output			7	18	
t _{fs}	Fail-safe output delay time from input data or power loss	See Figure 3		8.5		μs

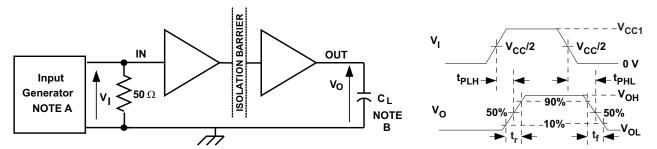
(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

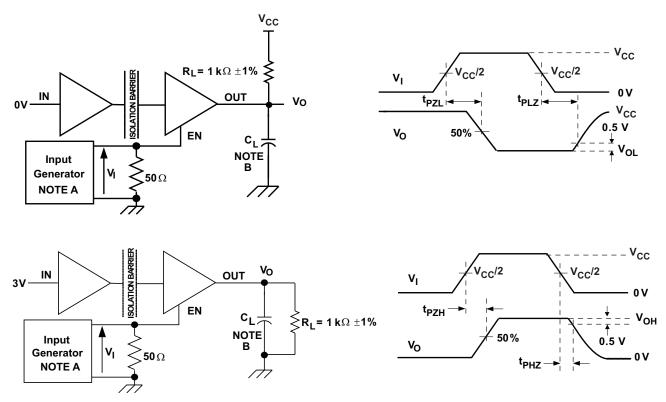
EXAS

ISO7640FM ISO7641FM SLLSE89E – SEPTEMBER 2011 – REVISED JANUARY 2013


www.ti.com

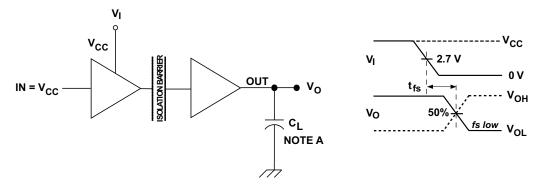
SUPPLY CURRENT

V_{CC1} and V_{CC2} at 2.7 V (over recommended operating conditions unless otherwise noted)


PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISO7640FM						
I _{CC1}	Disable	EN = 0 V		0.2	0.6	
I _{CC2}	Disable	EN = 0 V		3.3	5	
I _{CC1}	DC to 1 Mbps			0.2	0.7	
I _{CC2}	DC to 1 Mbps	,		3.4	5.1	
I _{CC1}	10 Mbps			0.4	1.1	mA
I _{CC2}		DC Signal: $V_I = V_{CC}$ or 0 V, AC Signal: All channels switching with square wave clock input; $C_L =$		4.4	6.8	ША
I _{CC1}	25 Mbps	15 pF		0.8	1.8	
I _{CC2}	20 10003			6	9.5	
I _{CC1}	100 Mbps			2.7	5	
I _{CC2}				14.2	21	
ISO7641FM	-					
I _{CC1}	Disable	EN1 = EN2 = 0 V		1.6	2.4	
I _{CC2}	Disable			2.8	4.1	
I _{CC1}	DC to 1 Mbps			1.7	2.5	
I _{CC2}	DO to T Mbps			2.9	4.2	
I _{CC1}	10 Mbps			2.1	3	mA
I _{CC2}	25 Mbps	DC Signal: $V_{I} = V_{CC}$ or 0 V,		3.8	5	ШA
I _{CC1}		AC Signal: All channels switching with square wave clock input; $C_L = 15 \text{ pF}$		2.8	3.8	
I _{CC2}	20 10000			5.2	6.7	
I _{CC1}	100 Mbps			6.4	7.5	
I _{CC2}				11.8	15.5	

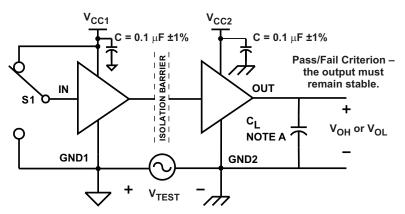
PARAMETER MEASUREMENT INFORMATION

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3ns, Z_O = 50 Ω . At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.



- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 10 kHz, 50% duty cycle, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O =$ 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



PARAMETER MEASUREMENT INFORMATION (continued)

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Instruments

EXAS

www.ti.com

DEVICE INFORMATION

IEC INSULATION AND SAFETY-RELATED SPECIFICATIONS FOR DW-16 PACKAGE

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal to terminal distance through air	8.3			mm
L(I02) ⁽¹⁾	Minimum external tracking (Creepage)	Shortest terminal to terminal distance across the package surface	8.1			mm
CTI	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.014			mm
D (2)	Isolation resistance, Input to	V _{IO} = 500 V, T _A < 100°C		>10 ¹²		0
$R_{IO}^{(2)}$	Output	$V_{IO} = 500 \text{ V}, 100^{\circ}\text{C} \le \text{T}_{A} \le \text{max}$		>10 ¹¹		Ω
$C_{IO}^{(2)}$	Barrier capacitance, Input to Output	$V_{I} = 0.4 \sin (2\pi ft), f = 1MHz$		2		pF
C1 ⁽³⁾	Input capacitance	$V_{I} = V_{CC}/2 + 0.4 \sin (2\pi ft), f = 1MHz, V_{CC} = 5 V$		2		pF

(1) Per JEDEC package dimensions.

(2) All pins on each side of the barrier tied together creating a two-terminal device.

(3) Measured from input pin to ground.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

DIN EN 60747-5-2 (VDE 0884 TEIL 2) INSULATION CHARACTERISTICS⁽⁴⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT
VIORM	Maximum working insulation voltage ⁽¹⁾		1414	V _{PEAK}
		After Input/Output safety test subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, t = 10 s, Partial discharge < 5 pC	1697	
V _{PR}	Input-to-output test voltage	Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, t = 10 s, Partial Discharge < 5 pC	2262	V _{PEAK}
		Method b1, 100% Production test $V_{PR} = V_{IORM} \times 1.875$, t = 1 s Partial discharge < 5 pC	2652	
V _{IOTM}	Maximum transient overvoltage	V _{TEST} = V _{IOTM} t = 60 sec (Qualification) t = 1 sec (100% Production)	6000	V _{PEAK}
R _S	Insulation resistance	$V_{IO} = 500 \text{ V at } T_{S}$	>10 ⁹	Ω
	Pollution degree		2	

(4) Climatic Classification 40/125/21

(1) For applications that require DC working voltages between GND1 and GND2, please contact Texas Instruments for further details.

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic Isolation Group	Material Group	П
	Rated mains voltage ≤ 300 V _{RMS}	I–IV
Installation classification	Rated mains voltage ≤ 600 V _{RMS}	I–III
	Rated mains voltage ≤ 1000 V _{RMS}	I—II

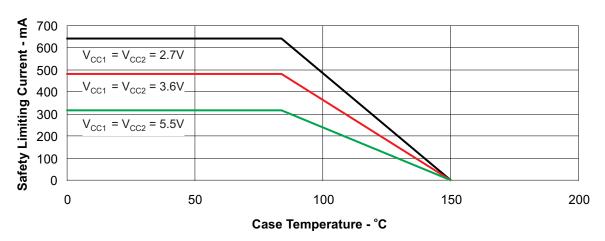
REGULATORY INFORMATION

VDE	TUV	CSA	UL
Certified according to DIN EN 60747-5-2	Certified according to EN/UL/CSA 60950-1 and 61010- 1	Approved under CSA Component Acceptance Notice #5A	Recognized under 1577 Component Recognition Program
Basic Insulation Maximum Transient Overvoltage, 6000 V _{PK} Maximum Working Voltage, 1414 V _{PK}	$\begin{array}{c} \text{5000 } \text{V}_{\text{RMS}} \text{ Reinforced Insulation,} \\ \text{400 } \text{V}_{\text{RMS}} \text{ maximum working} \\ \text{voltage} \\ \text{5000 } \text{V}_{\text{RMS}} \text{ Basic Insulation, 600} \\ \text{V}_{\text{RMS}} \text{ maximum working voltage} \end{array}$	5000 V_{RMS} Reinforced Insulation 2 Means of Patient Protection at 125 V_{RMS} per IEC 60601-1 (3rd Ed.)	Single Protection, 4243 $V_{RMS}^{(1)}$
File Number: 40016131	Certificate Number: U8V 11 08 77311 005	File Number: 220991	File Number: E181974

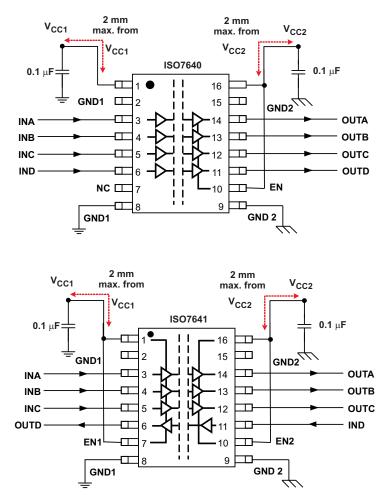
(1) Production tested \ge 5092 V_{RMS} for 1 second in accordance with UL 1577.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.


	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
			$\theta_{JA} = 72 \text{ °C/W}, V_I = 5.5V, T_J = 150 \text{°C}, T_A = 25 \text{°C}$			316	
IS	Safety input, output, or supply current	DW-16	$\theta_{JA} = 72 \text{ °C/W}, V_I = 3.6V, T_J = 150 \text{°C}, T_A = 25 \text{°C}$			482	mA
	Surrent		$\theta_{JA} = 72 \text{ °C/W}, V_I = 2.7V, T_J = 150 \text{°C}, T_A = 25 \text{°C}$			643	
T_S	Maximum case temperature					150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.


ISO7640FM ISO7641FM SLLSE89E – SEPTEMBER 2011 – REVISED JANUARY 2013

www.ti.com

APPLICATION INFORMATION

Figure 6. Typical ISO7640FM and ISO7641FM Application Circuit

Note: For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.

TYPICAL SUPPLY CURRENT EQUATIONS

(Calculated based on room temperature and typical Silicon process)

ISO7640FM:

At $V_{CC1} = V_{CC2} = 3.3V$ $I_{CC1} = 0.388 + 0.0312 \text{ x f}$ $I_{CC2} = 3.39 + 0.03561 \text{ x f} + 0.006588 \text{ x f x C}_{L}$ At $V_{CC1} = V_{CC2} = 5V$ $I_{CC1} = 0.584 + 0.05349 \text{ x f}$ $I_{CC2} = 4.184 + 0.05597 \text{ x f} + 0.009771 \text{ x f x C}_{L}$

ISO7641FM:

At $V_{CC1} = V_{CC2} = 3.3V$ $I_{CC1} = 1.848 + 0.03233 \text{ x f} + 0.001645 \text{ x f x } C_L$ $I_{CC2} = 3.005 + 0.03459 \text{ x f} + 0.0049395 \text{ x f x } C_L$ At $V_{CC1} = V_{CC2} = 5V$ $I_{CC1} = 2.369 + 0.05385 \text{ x f} + 0.002448 \text{ x f x } C_L$ $I_{CC2} = 3.857 + 0.05506 \text{ x f} + 0.007348 \text{ x f x } C_L$

 I_{CC1} and I_{CC2} are typical supply currents measured in mA; f is data rate measured in Mbps; C_{L} is the capacitive load on each channel measured in pF.

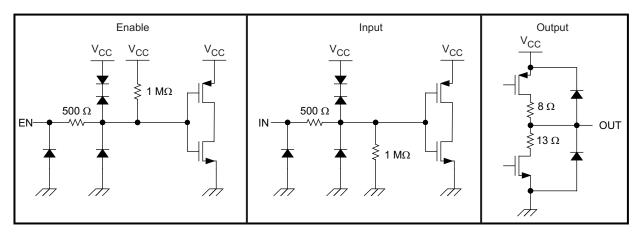
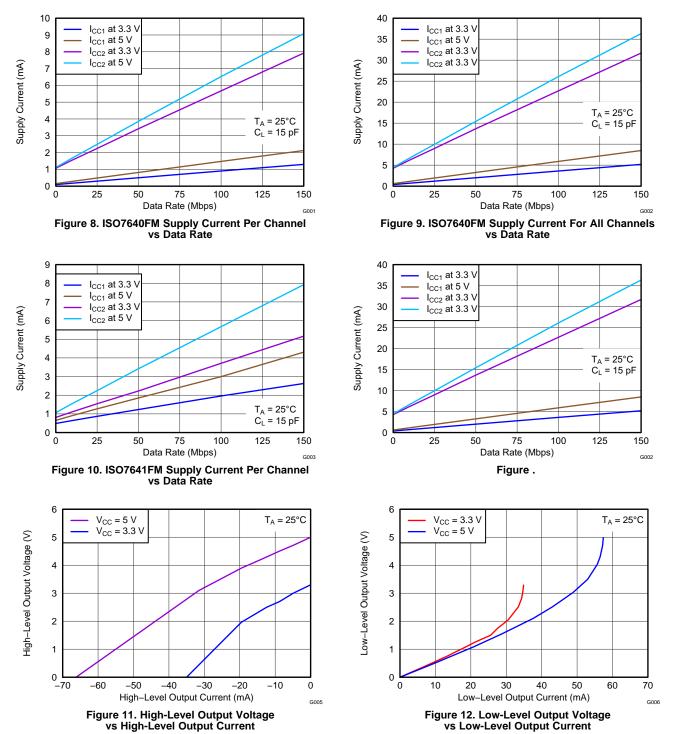
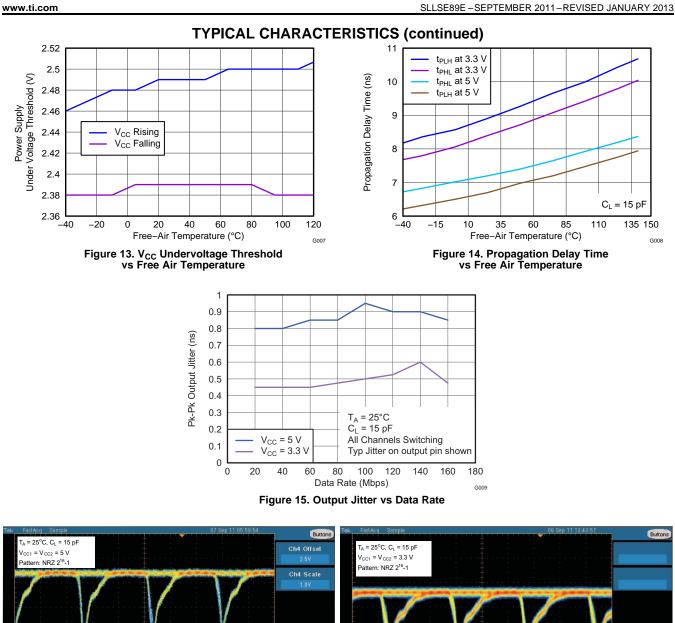



Figure 7. Device I/O Schematics

ISO7640FM ISO7641FM SLLSE89E – SEPTEMBER 2011 – REVISED JANUARY 2013 TEXAS INSTRUMENTS


www.ti.com

TYPICAL CHARACTERISTICS

ISO7640FM ISO7641FM

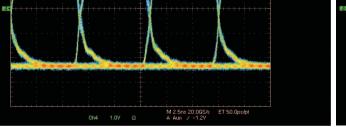


Figure 16. Typical Eye Diagram at 150 Mbps, 5 V Operation Figure 17. Typical Eye Diagram at 150 Mbps, 3.3 V Operation

M 2.5ns 20.0GS/s

REVISION HISTORY

Changes from Original (September 2011) to Revision A Page Added Note (1) "Per JEDEC package dimensions" to the IEC INSULATION AND SAFETY-RELATED SPECIFICATIONS FOR DW-16 PACKAGE table 16

Changes from Revision A (October 2011) to Revision B

•	Changed feature bullet From: ISO7641FC: 1.2 mA at 10 Mbps To: ISO7641FC: 1.3 mA at 10 Mbps	. 1
•	Changed Safety and Regulatory Approvals bullet From: 6 KV _{PK} for 1 Minute per UL1577 and VDE (Pending) To: 6000 V _{PK} / 4243 V _{RMS} for 1 Minute per UL 1577 (pending)	. 1
•	Changed Safety and Regulatory Approvals bullet From: To: 6000 V _{PK} / 4243 V _{RMS} for 1 Minute per UL 1577 (approved)	. 1
•	Changed Safety and Regulatory Approvals bullet From: CSA Component Acceptance Notice 5A, IEC 60601-1 Medical Standard (pending) To: CSA Component Acceptance Notice 5A, IEC 60601-1 Medical Standard (approved)	. 1
•	Changed all the ELECTRICAL CHARACTERISTICS tables	. 4
•	Changed all the SWITCHING CHARACTERISTICS tables	. 4
•	Changed the SWITCHING CHARACTERISTICS table ISO7640F and ISO7641F C-Grade values	. 5
•	Changed the SWITCHING CHARACTERISTICS table ISO7640F and ISO7641F C-Grade values	. 7
•	Changed the SWITCHING CHARACTERISTICS table ISO7640F and ISO7641F C-Grade values	. 9
•	Changed the SWITCHING CHARACTERISTICS table ISO7640F and ISO7641F C-Grade values	11
•	Changed the SWITCHING CHARACTERISTICS table ISO7640F and ISO7641F C-Grade values	13
•	Changed the IEC 60664-1 Ratings Table	17

Changes from Revision B (December 2011) to Revision C

Changed Safety and Regulatory Approvals bullet From: 6000 V_{PK} / 4243 V_{RMS} for 1 Minute per UL1577 (pending) To: 6000 V_{PK} / 4243 V_{RMS} for 1 Minute per UL 1577 (approved) 1 Changed Description text From: The devices have TTL input thresholds and can operate from 2.7 V, 3.3 V and 5 V supplies. To: The devices have TTL input thresholds and can operate from 2.7 V (M-Grade), 3.3 V and 5 V supplies. 2 Changed UL in the REGULATORY INFORMATION Table From: File Number: E181974 (Approval Pending) To: File

XAS

STRUMENTS

Page

Page

• •

ISO7640FM ISO7641FM

SLLSE89E - SEPTEMBER 2011 - REVISED JANUARY 2013

Changes from Revision C (January 2012) to Revision D

changes from Revision C (January 2012) to Revision D	Page
Deleted devices: ISO7631FM, ISO7631FC, ISO7640FC, ISO7641FC from the data sheet	1
Changed the Title From: Low Power Triple and Quad Channels Digital Isolators To: Low Power Quad Channels Digital Isolators	
Deleted devices from the Features List	1
Changed the DESCRIPTION	1
Changed EN1 and EN2 Pin Descriptions	2
Deleted device from the Available Options Table	3
Changed the ELECTRICAL, SWITCHING, and SUPPLY CURRENT CHARACTERISTICS tables	4
Changed the ELECTRICAL, SWITCHING, and SUPPLY CURRENT CHARACTERISTICS tables	6
Changed the ELECTRICAL, SWITCHING, and SUPPLY CURRENT CHARACTERISTICS tables	8
Changed the ELECTRICAL, SWITCHING, and SUPPLY CURRENT CHARACTERISTICS tables	10
Changed the ELECTRICAL, SWITCHING, and SUPPLY CURRENT CHARACTERISTICS tables	12
Deleted devices from the TYPICAL SUPPLY CURRENT EQUATIONS section	19
Changed the TYPICAL CHARACTERISTICS section	20

Changes from Revision D (July 2012) to Revision E

Page

•	Changed Z to Undetermined in the OUTPUT (OUTx) column of the FUNCTION TABLE	2
---	---	---

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
ISO7640FMDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7640FM	Samples
ISO7640FMDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7640FM	Samples
ISO7641FMDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7641FM	Samples
ISO7641FMDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7641FM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

24-Jan-2013

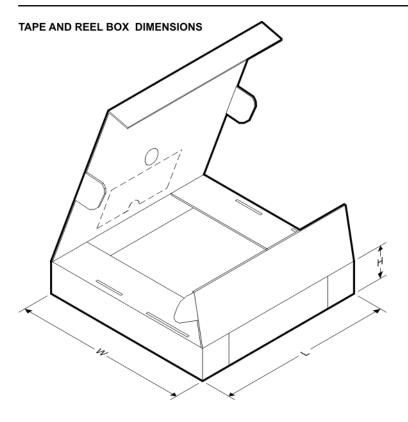
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

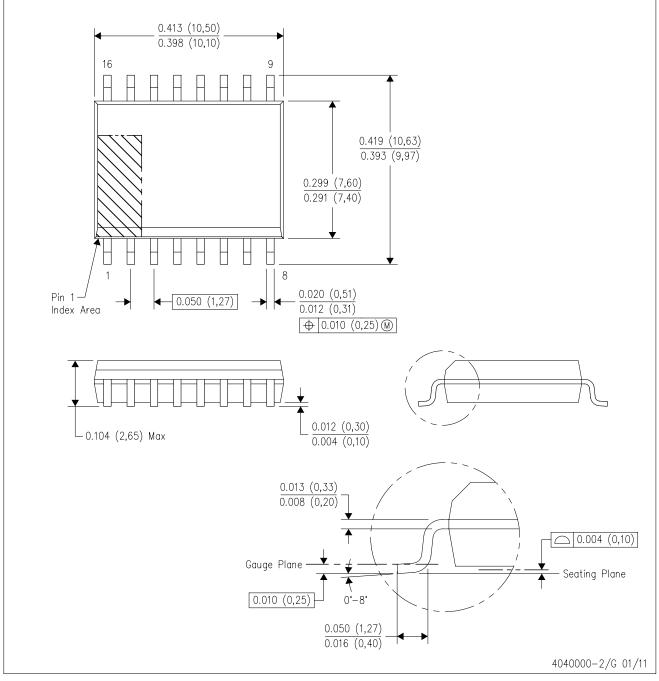

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7640FMDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7641FMDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013



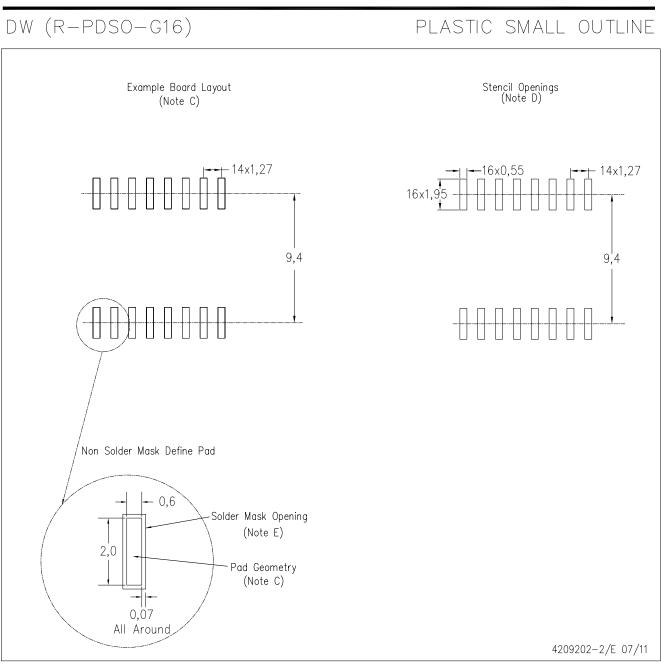
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7640FMDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7641FMDWR	SOIC	DW	16	2000	533.4	186.0	36.0

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated