

ELECTRONIC TWO-TONE RINGER

- LOW CURRENT CONSUMPTION, IN ORDER TO ALLOW THE PARALLEL OPERATION OF 4 DEVICES
- INTEGRATED RECTIFIER BRIDGE WITH ZE-NER DIODES TO PROTECT AGAINST OVER-VOLTAGES
- LITTLE EXTERNAL CIRCUITRY
- TONE AND SWITCHING FREQUENCIES AD-JUSTABLE BY EXTERNAL COMPONENTS
- INTEGRATED VOLTAGE AND CURRENT HYSTERESIS
- BRIDGE OUTPUT CONFIGURATION

DESCRIPTION

L3240 is a monolithic integrated circuit designed to replace the mechanical bell in telephone sets, in connection with an electro acoustical converter. The device can drive either directly a piezo ceramic converter (buzzer) or a small loudspeaker. In this case a transformer is needed. The two tone frequencies generated are switched by an internal oscillator in a fast sequence and made audible across output amplifiers in the transducer ; both tone frequencies and the switching frequency can be externally adjusted.

The supply voltage is obtained from the AC ring si-

PIN CONNECTION (top view)

gnal and the circuit is designed so that noise on the line or variations of the ringing signal cannot affect the correct operation of the devices.

The output bridge configuration allows to use a high impedance transducer with acoustical results much better than in a single ended configuration.

The two outputs can also be connected independently to different converters or actuators (acoustical, opto, logic).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VAB	Calling Voltage (f = 50 Hz) Continuous	120	Vrms
VAB	Calling Voltage (f = 50 Hz) 5s N/10s OFF	200	Vrms
DC	Supply Current	30	mA
Top	Operating Temperature	- 20 to + 70	°C
Tstg	Storage and Junction Temperature	- 65 to + 150	°C

THERMAL DATA

Bth is amb	Thermal Resistance Junction-ambient	Max	100	°C/W
- thi hamp				

Figure 1 : Test Circuit.

Figure 3 : Application Compatible with LS1240 (single ended output).

 $R_{1} \approx \frac{3.56 \times 10^{4}}{F_{1} (HZ)} \times \left(1 - 0.16 \times \ln \frac{F_{1}}{2543}\right)$

Figure 2 : Typical Application with Balanced Output.

 $f_{SWEEP} = \frac{750}{C1 (nF)}$

 $f_2 = 0.725 f_1$

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 $^{\circ}$ C ; V_s = applied between pins 7-2 ; otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage				26	V
I _B	Current Consumption Without Load (pins 8-1)	V _s = 16.5 to 29.5 V		1.5	1.8	mA
Von	Activation Voltage		12		13.5	V
VOFF	Sustaining Voltage		7.8		9.3	V
RD	Differential Resistance in OFF Condition (pins 8-1)		6.4			KΩ
Vout	Output Voltage Swing			V _s - 5		V
Голт	Short Circuit Current (pins 5-6)	V _s = 20 V		35		mA
Vs	Voltage Drop Between Pins 8-1 and Pins 7-2			3		V

AC OPERATION

Output Frequencies Fout 1 Fout 2		2,29 1.6		2,8 2.1	KHz
Fout 1 Fout 2		1.33		1.43	
Programming Resistor Range		8		56	KΩ
Sweep Frequency	R ₁ = 14 KΩ C1 = 100 nF	5.25	7,5	9.75	Hz

