

ADJUSTABLE VOLTAGE REGULATOR PLUS FILTER

PRELIMINARY DATA

- OUTPUT VOLTAGE ADJUSTABLE FROM 4 TO 11V
- HIGH OUTPUT CURRENT (UP TO 250mA)
- HIGH RIPPLE REJECTION
- HIGH LOAD REGULATION
- HIGH LINE REGULATION
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN WITH HYS-TERESIS
- DUMP PROTECTION

This circuit combines both a filter and a voltage regulator in order to provide a high ripple rejection over a wide input voltage range.

A supervisor low-pass loop of the element prevents the output transistor from saturation at low input voltage.

The non linear behaviour of this control circuitry allows a fast settling of the filter.

ORDERING NUMBER: L4915

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

T	
40	V
28	V
internally limited	
internally limited	
-40 to 150	°C
	40 28 internally limited internally limited -40 to 150

CONNECTION DIAGRAM

(Top view)

Fig. 1 - Application circuit

THERMAL DATA

R _{th j-amb}	Thermal resistance junction-ambient	max	80	°C/W
R _{th j-pins}	Thermal resistance junction-pins	max	20	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_1 = 13.5V$, $V_o = 8.5V$, circuit of Fig. 1, unless otherwise specified)

Parameter		Test Conditions		Min.	Түр.	Max.	Unit
Vi	Input voltage					20	V
Vo	Output voltage	V _I = 6 to 18V I _o = 5 to 150mA		4		11	V
ΔV _{1/O}	Controlled input-output dropout voltage	I _o = 5 to 150mA V _i = 6 to 10V			1.6	2.1	V
ΔVo	Line regulation	V _i = 12 to 18V I _o = 10mA			1	20	mV
ΔVo	Load regulation	$I_0 = 5 \text{ to } 250\text{mA}$ $t_{on} = 30\mu\text{s}$ $t_{off} = \ge 1\text{ms}$			50	100	mV
ΔVo	Load regulation (filter mode)	$V_i = 8.5V$ $I_o = 5 \text{ to } 150\text{ mA}$ $t_{on} = 30\mu\text{s}$ $t_{off} = \ge 1\text{ ms}$			150	250	mV
V _{ref}	Internal voltage reference				2.5		V
lq	Quiescent current	1 ₀ = 5mA			1	2	mA
۵۱a	Quiescent current change	V _i = 6 to 18V I _o = 5 to 150m A			0.05		mA
I _{AD}	Adjust input current				40		nA
	Output voltage drift	I _o = 10mA			1.2		mV/°C
SVR	Supply voltage rejection	V _{iac} = 1V _{rms} f = 100Hz I _o = 150mA	Baculator		71		dB
					35 (*)		dB
Isc	Short circuit current			250	300		mA
Ton	Switch on time	I ₀ = 150m A					-
511			Filter mode		500 (*)		ms
			Regulator		300		ms
тј	Thermal shutdown junction temperature				145		°C

(*) Depending of the $C_{\mbox{\scriptsize FT}}$ capacitor.

PRINCIPLE OF OPERATION

During normal operation (input voltage upper than V_{I MIN} = V_{OUT NOM} + Δ V_{I/O}). The device works as a normal voltage regulator built around the OP1 of the block diagram.

The series pass element uses a PNP-NPN connection to reduce the dropout. The reference voltage of the OP1 is derived from a REF through the OP2 and Ω 3, acting as an active zener diode of value V_{REF} .

In this condition the device works in the range (1) of the characteristic of the non linear drop control unit (see fig. 2).

The output voltage is fixed to its nominal value:

$$V_{OUTNOM} = V_{REF} \left(1 + \frac{R1}{R2}\right) = V_{CFT} \left(1 + \frac{R1}{R2}\right)$$

The ripple rejection is quite high (70dB) and independent to C_{FT} value.

On the usual voltage regulators, when the input voltage goes below the nominal value, the regulation transistors (series element) saturate bringing the system out of regulation and making it very sensible to every variation of the input voltage. On the contrary, a control loop on the L4915 consents to avoid the saturation of the series element by regulating the value of the reference voltage (pin 2). In fact, whenever the input volt-age decreases below (V_{L MIN} the supervisor loop, utilizing a non linear OTA, forces the reference voltage at pin 2 to decrease by discharging C_{FT}. So, during the static mode, when the input volt voltage goes below V_{MIN} the drop out is kept fixed

to about 1.6V. In this condition the device works as a low pass filter in the range (2) of the OTA characteristic. The ripple rejection is externally adjustable acting on C_{FT} as follows:

Where:

 $gm = 2 \cdot 10^{-5} \ \Omega^{-1} = OTA'S$ typical transconductance value on linear region

$$\frac{R1}{R2}$$
 = fixed ratio

 C_{FT} = value of capacitor in μF

The reaction time of the supervisor loop is given by the transconductance of the OTA and by $C_{\rm FT}.$ When the value of the ripple voltage is so high and its negative peak is fast enough to determine an istantaneous decrease of the dropout till 1.2V, the OTA works in a higher transconductance condition [range (3) of the characteristic] and discharges the capacitor rapidously.

If the ripple frequency is high enough the capacitor won't charge itself completely, and the output voltage reaches a small value allowing a better ripple rejection; the device's again working as a filter (fast transient range).

With $C_{FT} = 10\mu$ F; f = 100Hz; $V_o = 8.5V$ a SVR of 35 is obtained.

Fig. 2 - Nonliner transfer characteristic of the drop control unit

4/5

Fig. 6 – Quiescent current vs. input voltage ($V_0 = 8.5V$)

Fig. 7 - Dropout vs. load current

